def run(self, imagename=None): if imagename is not None: self.load_image(imagename) if self.image is None: raise ImportError("Image cannot be loaded") # Create ilastik dataMgr dataMgr = DataMgr() di = DataItemImage("") di.setDataVol(DataAccessor(self.image)) dataMgr.append(di, alreadyLoaded=True) dataMgr.module["Classification"]["classificationMgr"].classifiers = self.classifiers # Create FeatureMgr fm = FeatureMgr(dataMgr, self.features) fm.prepareCompute(dataMgr) fm.triggerCompute() fm.joinCompute(dataMgr) # Predict with loaded classifier classificationPredict = ClassifierPredictThread(dataMgr) classificationPredict.start() classificationPredict.wait() # del dataMgr return classificationPredict._prediction[0]
def run(self, imagename=None): if imagename is not None: self.load_image(imagename) if self.image is None: raise ImportError('Image cannot be loaded') # Create ilastik dataMgr dataMgr = DataMgr() di = DataItemImage('') di.setDataVol(DataAccessor(self.image)) dataMgr.append(di, alreadyLoaded=True) dataMgr.module["Classification"][ "classificationMgr"].classifiers = self.classifiers # Create FeatureMgr fm = FeatureMgr(dataMgr, self.features) fm.prepareCompute(dataMgr) fm.triggerCompute() fm.joinCompute(dataMgr) # Predict with loaded classifier classificationPredict = ClassifierPredictThread(dataMgr) classificationPredict.start() classificationPredict.wait() #del dataMgr return classificationPredict._prediction[0]
def run(self, workspace): # get input image image = workspace.image_set.get_image(self.image_name.value, must_be_color=False) # recover raw image domain image_ = image.pixel_data if image.get_scale() is not None: image_ = image_ * image.get_scale() else: # Best guess for derived images image_ = image_ * 255.0 # # Apply a rescaling that's done similarly in ilastik's dataImpex # image_max = np.max(image_) if (image_max > 255) and (image_max < 4096): image_ = image_ / 4095.0 * 255.0 # Create ilastik dataMgr dataMgr = DataMgr() # Transform input image to ilastik convention s # 3D = (time,x,y,z,channel) # 2D = (time,1,x,y,channel) # Note, this work for 2D images right now. Is there a need for 3D image_.shape = (1, 1) + image_.shape # Check if image_ has channels, if not add singelton dimension if len(image_.shape) == 4: image_.shape = image_.shape + (1,) # Add data item di to dataMgr di = DataItemImage("") di.setDataVol(DataAccessor(image_)) dataMgr.append(di, alreadyLoaded=True) dataMgr.module["Classification"]["classificationMgr"].classifiers = self.get_classifiers(workspace) # Create FeatureMgr fm = FeatureMgr(dataMgr, self.get_feature_items(workspace)) # Compute features fm.prepareCompute(dataMgr) fm.triggerCompute() fm.joinCompute(dataMgr) # Predict with loaded classifier classificationPredict = ClassifierPredictThread(dataMgr) classificationPredict.start() classificationPredict.wait() workspace.display_data.source_image = image.pixel_data workspace.display_data.dest_images = [] for group in self.probability_maps: # Produce output image and select the probability map probMap = classificationPredict._prediction[0][0, 0, :, :, int(group.class_sel.value)] temp_image = cpi.Image(probMap, parent_image=image) workspace.image_set.add(group.output_image.value, temp_image) workspace.display_data.dest_images.append(probMap)
def run(self, workspace): # get input image image = workspace.image_set.get_image(self.image_name.value, must_be_color=False) # recover raw image domain image_ = image.pixel_data * image.get_scale() # # Apply a rescaling that's done similarly in ilastik's dataImpex # image_max = np.max(image_) if (image_max > 255) and (image_max < 4096): image_ = image_ / 4095. * 255.0 # Create ilastik dataMgr dataMgr = DataMgr() # Transform input image to ilastik convention s # 3D = (time,x,y,z,channel) # 2D = (time,1,x,y,channel) # Note, this work for 2D images right now. Is there a need for 3D image_.shape = (1, 1) + image_.shape # Check if image_ has channels, if not add singelton dimension if len(image_.shape) == 4: image_.shape = image_.shape + (1, ) # Add data item di to dataMgr di = DataItemImage('') di.setDataVol(DataAccessor(image_)) dataMgr.append(di, alreadyLoaded=True) dataMgr.module["Classification"]["classificationMgr"].classifiers =\ self.get_classifiers(workspace) # Create FeatureMgr fm = FeatureMgr(dataMgr, self.get_feature_items(workspace)) # Compute features fm.prepareCompute(dataMgr) fm.triggerCompute() fm.joinCompute(dataMgr) # Predict with loaded classifier classificationPredict = ClassifierPredictThread(dataMgr) classificationPredict.start() classificationPredict.wait() workspace.display_data.source_image = image.pixel_data workspace.display_data.dest_images = [] for group in self.probability_maps: # Produce output image and select the probability map probMap = classificationPredict._prediction[0][ 0, 0, :, :, int(group.class_sel.value)] temp_image = cpi.Image(probMap, parent_image=image) workspace.image_set.add(group.output_image.value, temp_image) workspace.display_data.dest_images.append(probMap)
def _predict_image_with_ilastik(self, image_): import ilastik from ilastik.core.dataMgr import DataMgr, DataItemImage from ilastik.modules.classification.core.featureMgr import FeatureMgr from ilastik.modules.classification.core.classificationMgr import ClassificationMgr from ilastik.modules.classification.core.features.featureBase import FeatureBase from ilastik.modules.classification.core.classifiers.classifierRandomForest import ClassifierRandomForest from ilastik.modules.classification.core.classificationMgr import ClassifierPredictThread from ilastik.core.volume import DataAccessor import numpy, h5py dataMgr = DataMgr() # Transform input image to ilastik convention s # 3D = (time,x,y,z,channel) # 2D = (time,1,x,y,channel) # Note, this work for 2D images right now. Is there a need for 3D image_.shape = (1,1) + image_.shape # Check if image_ has channels, if not add singelton dimension if len(image_.shape) == 4: image_.shape = image_.shape + (1,) # Add data item di to dataMgr di = DataItemImage('') di.setDataVol(DataAccessor(image_)) dataMgr.append(di, alreadyLoaded=True) fileName = self.params["ilastik_classifier"] ilastik_class = self.params["ilastik_class_selector"] hf = h5py.File(fileName,'r') temp = hf['classifiers'].keys() # If hf is not closed this leads to an error in win64 and mac os x hf.close() del hf classifiers = [] for cid in temp: cidpath = 'classifiers/' + cid classifiers.append(ClassifierRandomForest.loadRFfromFile(fileName, str(cidpath))) dataMgr.module["Classification"]["classificationMgr"].classifiers = classifiers # Restore user selection of feature items from hdf5 featureItems = [] f = h5py.File(fileName,'r') for fgrp in f['features'].values(): featureItems.append(FeatureBase.deserialize(fgrp)) f.close() del f fm = FeatureMgr(dataMgr, featureItems) # Create FeatureMgr # Compute features fm.prepareCompute(dataMgr) fm.triggerCompute() fm.joinCompute(dataMgr) # Predict with loaded classifier classificationPredict = ClassifierPredictThread(dataMgr) classificationPredict.start() classificationPredict.wait() if ilastik_class >= classificationPredict._prediction[0].shape[-1]: raise RuntimeError('ilastik output class not valid...') # Produce output image and select the probability map probMap = (classificationPredict._prediction[0][0,0,:,:, ilastik_class] * 255).astype(numpy.uint8) img_out = ccore.numpy_to_image(probMap, True) return img_out