def perturb_frame(frame, params): dims = frame.image.get_hw() rand_affine = RandomPerturber.generate_random_affine( dims / 2, dims, params) perturbed_frame = Frame(frame.image_path, copy.deepcopy(frame.objects)) perturbed_frame.image = rand_affine.apply_to_image(frame.image, dims) for i, obj in enumerate(frame.objects): perturbed_frame.objects[i].box = rand_affine.apply_to_box(obj.box) return perturbed_frame
def __load_labelled_frames(self, frame_dir, labels_file): files = [f for f in listdir(frame_dir) if isfile(join(frame_dir, f))] labels = KITTILabel.labels_from_file( labels_file) if labels_file is not None else [] frames = [] for f in files: file_index = int(splitext(basename(f))[0]) objects = [] for l in labels: if int(l.frame_idx) == file_index: objects.append(l.to_object()) frames.append(Frame(join(frame_dir, f), objects)) return frames
def perturb_frame(frame,params): dims = frame.image.get_hw() rand_affine = RandomPerturber.generate_random_affine(dims/2,dims,params) perturbed_frame = Frame(frame.image_path) perturbed_frame.image = rand_affine.apply_to_image(frame.image,dims) for i,obj in enumerate(frame.objects): # filter out completely out of bound objects perturbed_obj_box = rand_affine.apply_to_box(obj.box) perturbed_polygons = rand_affine.apply_to_polygons(obj.polygons) if Box.intersection(perturbed_obj_box,perturbed_frame.image.get_bounding_box()) is not None: obj_copy = copy.deepcopy(obj) obj_copy.box = perturbed_obj_box obj_copy.polygons = perturbed_polygons perturbed_frame.objects.append(obj_copy) return perturbed_frame
def apply_affine_to_frame(frame, affine, output_size): perturbed_frame = Frame(frame.image_path) perturbed_frame.image = affine.apply_to_image(frame.image, output_size) for i, obj in enumerate(frame.objects): # filter out completely out of bound objects perturbed_obj_box = affine.apply_to_box(obj.box) perturbed_polygons = affine.apply_to_polygons(obj.polygons) if Box.intersection( perturbed_obj_box, perturbed_frame.image.get_bounding_box()) is not None: obj_copy = copy.deepcopy(obj) obj_copy.box = perturbed_obj_box obj_copy.polygons = perturbed_polygons perturbed_frame.objects.append(obj_copy) return perturbed_frame
def __load_labelled_frames(self,frame_dir,labels_file,calib_file=None): files = [f for f in listdir(frame_dir) if isfile(join(frame_dir, f))] labels = KITTILabel.labels_from_file(labels_file) if labels_file is not None else [] calibration_mat = None if os.path.isfile(calib_file): calibration_mat = self.__load_camera_matrix_from_calib(calib_file) frames = [] sorted_files = sorted(files, key=lambda x: int(splitext(basename(x))[0])) for f in sorted_files: file_index = int(splitext(basename(f))[0]) objects = [] for l in labels: if int(l.frame_idx) == file_index: objects.append(l.to_object()) frames.append(Frame(join(frame_dir,f),objs=objects,calib_mat=calibration_mat)) return frames
def __load_frames(self, cars_dir, labels_mat): print('Loading Stanford Cars Frames') labels = scipy.io.loadmat(labels_mat)['annotations'][0] # load frames with labels for label in labels: if len(label) == 5: xmin, ymin, xmax, ymax, path = label elif len(label) == 6: xmin, ymin, xmax, ymax, _, path = label else: assert False, 'unable to parse label!' box = Box(float(xmin[0][0]), float(ymin[0][0]), float(xmax[0][0]), float(ymax[0][0])) obj = Object(box, obj_type='car') image_path = os.path.join(cars_dir, path[0]) self.frames.append(Frame(image_path, [obj]))