return False return True indices_in_bound, = np.where(np.apply_along_axis(check_in_bounds, 1, csv, x_bounds, y_bounds)) data_thresholded = csv[indices_in_bound] n = data_thresholded.shape[0] def synapses_over_unmasked(row): s = (row[4]/row[3])*(64**3) return [row[0], row[1], row[2], s] syn_unmasked = np.apply_along_axis(synapses_over_unmasked, 1, data_thresholded) syn_normalized = syn_unmasked a = np.apply_along_axis(lambda x:x[4]/x[3], 1, data_thresholded) spike = a[np.logical_and(a <= 0.0015, a >= 0.0012)] n, bins, _ = plt.hist(spike, 2000) bin_max = np.where(n == n.max()) bin_width = bins[1]-bins[0] syn_normalized[:,3] = syn_normalized[:,3]/(64**3) spike = syn_normalized[np.logical_and(syn_normalized[:,3] <= 0.00131489435301+bin_width, syn_normalized[:,3] >= 0.00131489435301-bin_width)] spike_thres = data_thresholded[np.logical_and(syn_normalized[:,3] <= 0.00131489435301+bin_width, syn_normalized[:,3] >= 0.00131489435301-bin_width)] len_spike = len(spike_thres) # Compare some of the bins represented the spike xs = np.unique(spike_thres[:,0]) ys = np.unique(spike_thres[:,1]) get_image((0,10),(0,10),xs,ys,'spike'+str(0)+"_"+str(0))
def synapses_over_unmasked(row): s = (row[4] / row[3]) * (64 ** 3) return [row[0], row[1], row[2], s] syn_unmasked = np.apply_along_axis(synapses_over_unmasked, 1, data_thresholded) syn_normalized = syn_unmasked # Looking at images across y, and of the layers in the y-direction ######################################################################################### from image_builder import get_image xs = np.unique(data_thresholded[:, 0]) ys = np.unique(data_thresholded[:, 1]) # Layer across y get_image((0, 1), (0, len(ys) - 1), xs, ys, "across_y") print len(ys) - 1 # Each y-layer defined by bounds of local minima in total syn density at each y y_bounds = [(1564, 1837), (1837, 2071), (2071, 2305), (2305, 2539), (2539, 3124)] for _, bounds in enumerate(y_bounds): print "for\n" y_lower = np.where(ys == bounds[0])[0][0] y_upper = np.where(ys == bounds[1])[0][0] print y_lower, y_upper, "hi\n" i = get_image((0, 1), (y_lower, y_upper), xs, ys, str(bounds[0]) + "_" + str(bounds[1]))