예제 #1
0
    def _draw_back_pane(self, pane):
        mode = None
        with self.state.lock:
            back_enabled = self.state.back_enabled
            back_mode = self.state.back_mode
            back_filt_mode = self.state.back_filt_mode
            state_layer = self.state.layer
            selected_unit = self.state.selected_unit
            back_what_to_disp = self.get_back_what_to_disp()

        if back_what_to_disp == 'disabled':
            pane.data[:] = to_255(self.settings.window_background)

        elif back_what_to_disp == 'stale':
            pane.data[:] = to_255(self.settings.stale_background)

        else:
            # One of the backprop modes is enabled and the back computation (gradient or deconv) is up to date

            grad_blob = self.net.blobs['data'].diff

            # Manually deprocess (skip mean subtraction and rescaling)
            #grad_img = self.net.deprocess('data', diff_blob)
            grad_blob = grad_blob[0]  # bc01 -> c01
            grad_blob = grad_blob.transpose((1, 2, 0))  # c01 -> 01c
            grad_img = grad_blob[:, :,
                                 self._net_channel_swap_inv]  # e.g. BGR -> RGB

            # Mode-specific processing
            assert back_mode in ('grad', 'deconv')
            assert back_filt_mode in ('raw', 'gray', 'norm', 'normblur')
            if back_filt_mode == 'raw':
                grad_img = norm01c(grad_img, 0)
            elif back_filt_mode == 'gray':
                grad_img = grad_img.mean(axis=2)
                grad_img = norm01c(grad_img, 0)
            elif back_filt_mode == 'norm':
                grad_img = np.linalg.norm(grad_img, axis=2)
                grad_img = norm01(grad_img)
            else:
                grad_img = np.linalg.norm(grad_img, axis=2)
                cv2.GaussianBlur(grad_img, (0, 0),
                                 self.settings.caffevis_grad_norm_blur_radius,
                                 grad_img)
                grad_img = norm01(grad_img)

            # If necessary, re-promote from grayscale to color
            if len(grad_img.shape) == 2:
                grad_img = np.tile(grad_img[:, :, np.newaxis], 3)

            grad_img_resize = ensure_uint255_and_resize_to_fit(
                grad_img, pane.data.shape)

            pane.data[0:grad_img_resize.shape[0],
                      0:grad_img_resize.shape[1], :] = grad_img_resize
예제 #2
0
    def _draw_back_pane(self, pane):
        mode = None
        with self.state.lock:
            back_enabled = self.state.back_enabled
            back_mode = self.state.back_mode
            back_filt_mode = self.state.back_filt_mode
            state_layer = self.state.layer
            selected_unit = self.state.selected_unit
            back_what_to_disp = self.get_back_what_to_disp()
                
        if back_what_to_disp == 'disabled':
            pane.data[:] = to_255(self.settings.window_background)

        elif back_what_to_disp == 'stale':
            pane.data[:] = to_255(self.settings.stale_background)

        else:
            # One of the backprop modes is enabled and the back computation (gradient or deconv) is up to date
            
            grad_blob = self.net.blobs['data'].diff

            # Manually deprocess (skip mean subtraction and rescaling)
            #grad_img = self.net.deprocess('data', diff_blob)
            grad_blob = grad_blob[0]                    # bc01 -> c01
            grad_blob = grad_blob.transpose((1,2,0))    # c01 -> 01c
            grad_img = grad_blob[:, :, self._net_channel_swap_inv]  # e.g. BGR -> RGB

            # Mode-specific processing
            assert back_mode in ('grad', 'deconv')
            assert back_filt_mode in ('raw', 'gray', 'norm', 'normblur')
            if back_filt_mode == 'raw':
                grad_img = norm01c(grad_img, 0)
            elif back_filt_mode == 'gray':
                grad_img = grad_img.mean(axis=2)
                grad_img = norm01c(grad_img, 0)
            elif back_filt_mode == 'norm':
                grad_img = np.linalg.norm(grad_img, axis=2)
                grad_img = norm01(grad_img)
            else:
                grad_img = np.linalg.norm(grad_img, axis=2)
                cv2.GaussianBlur(grad_img, (0,0), self.settings.caffevis_grad_norm_blur_radius, grad_img)
                grad_img = norm01(grad_img)

            # If necessary, re-promote from grayscale to color
            if len(grad_img.shape) == 2:
                grad_img = np.tile(grad_img[:,:,np.newaxis], 3)

            grad_img_resize = ensure_uint255_and_resize_to_fit(grad_img, pane.data.shape)

            pane.data[0:grad_img_resize.shape[0], 0:grad_img_resize.shape[1], :] = grad_img_resize
예제 #3
0
    def _draw_back_pane(self, pane):
        mode = None
        with self.state.lock:
            back_enabled = self.state.back_enabled
            back_mode = self.state.back_mode
            back_filt_mode = self.state.back_filt_mode
            state_layer = self.state.layer
            selected_unit = self.state.selected_unit
            back_what_to_disp = self.get_back_what_to_disp()

        if back_what_to_disp == 'disabled':
            pane.data[:] = to_255(self.settings.window_background)

        elif back_what_to_disp == 'stale':
            pane.data[:] = to_255(self.settings.stale_background)

        else:
            # One of the backprop modes is enabled and the back computation (gradient or deconv) is up to date

            grad_img = self.my_net.get_input_gradient_as_image()

            # Mode-specific processing
            assert back_mode in ('grad', 'deconv')
            assert back_filt_mode in ('raw', 'gray', 'norm', 'normblur')
            if back_filt_mode == 'raw':
                grad_img = norm01c(grad_img, 0)
            elif back_filt_mode == 'gray':
                grad_img = grad_img.mean(axis=2)
                grad_img = norm01c(grad_img, 0)
            elif back_filt_mode == 'norm':
                grad_img = np.linalg.norm(grad_img, axis=2)
                grad_img = norm01(grad_img)
            else:
                grad_img = np.linalg.norm(grad_img, axis=2)
                cv2.GaussianBlur(grad_img, (0, 0),
                                 self.settings.caffevis_grad_norm_blur_radius,
                                 grad_img)
                grad_img = norm01(grad_img)

            # If necessary, re-promote from grayscale to color
            if len(grad_img.shape) == 2:
                grad_img = np.tile(grad_img[:, :, np.newaxis], 3)

            grad_img_resize = ensure_uint255_and_resize_to_fit(
                grad_img, pane.data.shape)

            pane.data[0:grad_img_resize.shape[0],
                      0:grad_img_resize.shape[1], :] = grad_img_resize