def compute_hash_pattern_correction(folder): fns = glob.glob(os.path.join(folder, "*.tif*")) if len(fns) == 0: print "No tif files found in: %s" % (folder) sys.exit() if True: ims = [ip.open_image(fn).astype(np.float32) for fn in fns] im_mean = ims[0].copy() for im in ims[1:]: im_mean += im im_mean /= len(ims) background = cv2.GaussianBlur(im_mean, (0, 0), 8, borderType=cv2.BORDER_REPLICATE) pattern = im_mean - background pattern -= pattern.mean() else: background = ip.open_image( r"C:\Users\Neil\BT\Data\R2 FFT\FF Wafer Images\precomputed\std - ff.tif" ).astype(np.float32) / 4.0 im_mean = ip.open_image( r"C:\Users\Neil\BT\Data\R2 FFT\FF Wafer Images\precomputed\SUM_Stack.tif" ).astype(np.float32) / 4.0 pattern = im_mean - background pattern -= pattern.mean() if False: view = ImageViewer(im_mean) ImageViewer(background) ImageViewer(pattern) view.show() sys.exit() # find a mask of the peaks fft = fftshift(cv2.dft(pattern, flags=cv2.DFT_COMPLEX_OUTPUT)) fft_mag = cv2.magnitude(fft[:, :, 0], fft[:, :, 1]) fft_smooth = cv2.GaussianBlur(cv2.medianBlur(fft_mag, ksize=5), ksize=(0, 0), sigmaX=5) fft_log = cv2.log(fft_smooth) THRESH = 13.75 mask = fft_log > THRESH # ignore middle (low frequency stuff) RADIUS = 35 h, w = pattern.shape ys, xs = draw.circle(h // 2, w // 2, RADIUS) mask[ys, xs] = 0 np.save("hash_fft_mask.npy", mask) print "FFT mask saved to 'hash_fft_mask.npy'" if False: view = ImageViewer(fft_log) view = ImageViewer(mask) view.show()
def main(): features = {} fn = r"C:\Users\Neil\Desktop\R3 crack\raw PL images\cracked wafer PL image.tif" im = ip.open_image(fn).astype(np.float32) if im.shape[0] > 700: print ' WARNING: Image resized' im_max = im.max() im = ndimage.zoom(im, 0.5) if im.max() > im_max: im[im > im_max] = im_max if False: view = ImageViewer(im) view.show() features['_alg_mode'] = 'mono wafer' crop_props = cropping.crop_wafer_cz(im, create_mask=True, skip_crop=False) features['corners'] = crop_props['corners'] cropped = cropping.correct_rotation( im, crop_props, pad=False, border_erode=parameters.BORDER_ERODE_CZ, fix_chamfer=False) mono_wafer.feature_extraction(cropped, crop_props, features=features) ip.print_metrics(features) rgb = mono_wafer.create_overlay(features) view = ImageViewer(rgb) view.show()
def run_single(fn, mode, display=True, downsize=True): features = {} im = ip.open_image(fn).astype(np.float32) if downsize and im.shape[0] > 750: print ' WARNING: Image resized' im_max = im.max() im = ndimage.zoom(im, 0.5) if im.max() > im_max: im[im > im_max] = im_max if False: view = ImageViewer(im) view.show() features['_fn'] = os.path.splitext(os.path.split(fn)[1])[0] if mode == "multi": features['_alg_mode'] = 'multi wafer' multi_cell.feature_extraction(im, features=features) elif mode == "mono": features['_alg_mode'] = 'mono wafer' mono_cell.feature_extraction(im, features=features) f = ip.print_metrics(features) if display: rgb = multi_cell.create_overlay(features) view = ImageViewer(im) ImageViewer(rgb) view.show() return f
def run_module(): if False: fn_pl = r"C:\Users\Neil\BT\Data\modules\REC-144\REC-144_G00_LR0086_P35_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\REC-144\REC-144_G00_LR0086_CC7.80_2x2_EL.tif" elif False: fn_pl = r"C:\Users\Neil\BT\Data\modules\REC-143\REC-143_G00_LR0086_P35_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\REC-143\REC-143_G00_LR0086_CC7.50_2x2_EL.tif" elif False: fn_pl = r"C:\Users\Neil\BT\Data\modules\CNY-232\CNY-232_G00_LR0106_P93_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\CNY-232\CNY-232_G00_LR0106_CC13.00_2x2_EL.tif" elif True: fn_pl = r"C:\Users\Neil\BT\Data\modules\STP-410\STP-410_G00_LR0052_P53_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\STP-410\STP-410_G00_LR0045_CC5.50_2x2_EL.tif" elif False: fn_pl = r"C:\Users\Neil\BT\Data\modules\WIN-555\WIN-555_LR0245_P93_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\WIN-555\WIN-555_LR0160_CV43.00_2x2_EL.tif" elif False: fn_pl = r"C:\Users\Neil\BT\Data\modules\APO-217\APO-217_G00_LR0089_P93_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\APO-217\APO-217_G00_LR0089_CC13.00_2x2_EL.tif" elif False: fn_pl = r"C:\Users\Neil\BT\Data\modules\CNY-098\CNY-098_G00_LR0090_P93_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\CNY-098\CNY-098_G00_LR0090_CC10.80_2x2_EL.tif" elif False: fn_el = r"C:\Users\Neil\BT\Data\modules\CNY-101\CNY-101_G00_LR0090_CC10.80_2x2_EL.tif" fn_pl = r"C:\Users\Neil\BT\Data\modules\CNY-101\CNY-101_G00_LR0090_P93_2x2_OCPL.tif" elif False: fn_pl = r"C:\Users\Neil\BT\Data\modules\CNY-139\CNY-139_G00_LR0106_P93_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\CNY-139\CNY-139_G00_LR0106_CC13.00_2x2_EL.tif" elif False: fn_pl = r"C:\Users\Neil\BT\Data\modules\CNY-232\CNY-232_G00_LR0106_P93_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\CNY-232\CNY-232_G00_LR0106_CC13.00_2x2_EL.tif" elif False: fn_pl = r"C:\Users\Neil\BT\Data\modules\CNY-449\CNY-449_G00_LR0106_P93_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\CNY-449\CNY-449_G00_LR0106_CC13.00_2x2_EL.tif" im_pl = ip.open_image(fn_pl).astype(np.float32) im_el = ip.open_image(fn_el).astype(np.float32) features = {'fn': os.path.splitext(os.path.split(fn_pl)[1])[0]} features_module.feature_extraction(im_pl, im_el, features) ip.print_metrics(features) ratio = features['im_pl_el'] view = ImageViewer(ratio[::4, ::4]) view.show()
def run_block(): fn = r"C:\Users\Neil\BT\Data\blocks\misc\brick JW - Test PL Image %28PL Image%29.tif" #fn = r"C:\Users\Neil\BT\Data\blocks\B4\691 - PL Image B4 N2 4V (PL Image - Composite).tif" #fn = r"C:\Users\Neil\BT\Data\blocks\P3045564-20 ten times\.tif" #fn = r"C:\Users\Neil\BT\Data\blocks\P3045564-20 ten times\427 - P3045564-20-1 (PL Image).tif" im_pl = ip.open_image(fn).astype(np.float32) features = {} features_block.feature_extraction(im_pl, features) rgb = features_block.create_overlay(features) ip.print_metrics(features) view = ImageViewer(im_pl) ImageViewer(rgb) view.show()
def run_plir(): fn = r"C:\Users\Neil\BT\Data\2017-09-06 TransferFunctions.TXT" vals = features_block.load_transfer(fn) spline_plir, spline_nf, spline_sp, spline_lp = features_block.interpolate_transfer( vals, debug=False) if False: fn_sp = r"C:\Users\Neil\BT\Data\blocks\PLIR\Trina\2016-05-12\5.4V W (Uncalibrated PL Image) west short pass.tif" fn_lp = r"C:\Users\Neil\BT\Data\blocks\PLIR\Trina\2016-05-12\5.4V W (Uncalibrated PL Image) west long pass.tif" fn_nf = r"C:\Users\Neil\BT\Data\blocks\PLIR\Trina\2016-05-12\5.4V W (Uncalibrated PL Image) west no filter.tif" elif False: fn_sp = r"C:\Users\Neil\BT\Data\blocks\PLIR\marker\S0069_20170807.033044_ID4624_plg.meas.block.b3BL.north.sp.img.tif" fn_lp = r"C:\Users\Neil\BT\Data\blocks\PLIR\marker\S0069_20170807.033044_ID4624_plg.meas.block.b3BL.north.lp.img.tif" fn_nf = r"C:\Users\Neil\BT\Data\blocks\PLIR\marker\S0069_20170807.033044_ID4624_plg.meas.block.b3BL.north.std.img.tif" else: fn_sp = r"C:\Users\Neil\Desktop\Rietech.2.1172\tifs\plg.meas.block.b3bl.north.sp.img.tif" fn_lp = r"C:\Users\Neil\Desktop\Rietech.2.1172\tifs\plg.meas.block.b3bl.north.lp.img.tif" fn_nf = r"C:\Users\Neil\Desktop\Rietech.2.1172\tifs\plg.meas.block.b3pl.img.tif" im_sp = ip.open_image(fn_sp, cast_long=False).astype(np.float32) im_lp = ip.open_image(fn_lp, cast_long=False).astype(np.float32) im_pl = ip.open_image(fn_nf, cast_long=False).astype(np.float32) if False: im_sp = ndimage.zoom(im_sp, zoom=0.5) im_lp = ndimage.zoom(im_lp, zoom=0.5) features = {} features_block.plir(im_sp, im_lp, im_pl, features, spline_plir=spline_plir, spline_plc=spline_nf) ip.print_metrics(features) log = np.log(features['im_tau_bulk_f32']) view = ImageViewer(features['im_tau_bulk_f32']) #ImageViewer(log) view.show()
def run_plir2(): fn = r"C:\Users\Neil\BT\Data\2017-09-06 TransferFunctions.TXT" vals = features_block.load_transfer(fn) spline_plir, spline_nf, spline_sp, spline_lp = features_block.interpolate_transfer( vals, debug=False) if False: fn_sp = r"C:\Users\Neil\BT\Data\blocks\PLIR\2017-11-01\plg.meas.block.b3bl.north.sp.img.tif" fn_lp = r"C:\Users\Neil\BT\Data\blocks\PLIR\2017-11-01\plg.meas.block.b3bl.north.lp.img.tif" elif False: fn_sp = r"C:\Users\Neil\Desktop\1172\plg.meas.block.b3bl.north.sp.img.tif" fn_lp = r"C:\Users\Neil\Desktop\1172\plg.meas.block.b3bl.north.lp.img.tif" else: fn_sp = r"C:\Users\Neil\Desktop\Rietech.2.1172\tifs\plg.meas.block.b3bl.north.sp.img.tif" fn_lp = r"C:\Users\Neil\Desktop\Rietech.2.1172\tifs\plg.meas.block.b3bl.north.lp.img.tif" im_sp = ip.open_image(fn_sp).astype(np.float32) im_lp = ip.open_image(fn_lp).astype(np.float32) if False: im_sp = ndimage.zoom(im_sp, zoom=0.5) im_lp = ndimage.zoom(im_lp, zoom=0.5) features = {} features_block.plir2(im_sp, im_lp, features, spline_plir=spline_plir, spline_sp=spline_sp) ip.print_metrics(features) log = np.log(features['im_tau_bulk_f32']) view = ImageViewer(features['im_tau_bulk_f32']) ImageViewer(log) plt.figure() plt.plot(features['im_tau_bulk_f32'].mean(axis=0)) view.show()
def main(): folder = r"C:\Users\Neil\BT\Data\half processed" files = glob.glob(os.path.join(folder, "*.tif")) for e, fn in enumerate(files): #if e != 34: # continue print "%s (%d/%d)" % (fn, e, len(files)) features = {} im = ip.open_image(fn).astype(np.float32) crop_props = feature_extraction(im, features) if True: # save crop results pil_im = cropping.draw_crop_box(im, crop_props, pil_im=True) fn_root = os.path.splitext(os.path.split(fn)[1])[0] fn_out = os.path.join(r"C:\Users\Neil\Desktop\results\crop", fn_root + ".png") pil_im.save(fn_out)
def run_stripe(): if True: mode = "mono" # crack fn = r"C:\Users\Neil\BT\Data\stripe\2017-09-07 Baccini 1 in 1\S0041_20170907.120013_Baccini 1 in 1 test_ID2_raw.tif" # corner #fn = r"C:\Users\Neil\BT\Data\stripe\2017-09-07 Baccini 1 in 1\S0041_20170907.113711_Baccini 1 in 1_ID5_raw.tif" else: mode = "multi" fn = r"C:\Users\Neil\BT\Data\stripe\2017-09-07 Baccini 1 in 1\S0041_20170907.121040_Baccini 1 in 1 test_ID8_raw.tif" im_pl = ip.open_image(fn).astype(np.float32) features = {"mode": mode} features_stripes.feature_extraction(im_pl, features) rgb = features_stripes.create_overlay(features) ip.print_metrics(features) print ip.list_images(features) view = ImageViewer(im_pl) ImageViewer(features['bl_cropped_u8']) ImageViewer(rgb) view.show()
def run_single(fn, display=True, downsize=True): features = {} im = ip.open_image(fn).astype(np.float32) if downsize and im.shape[0] > 750: print ' WARNING: Image resized' im_max = im.max() im = ndimage.zoom(im, 0.5) if im.max() > im_max: im[im > im_max] = im_max if False: view = ImageViewer(im) view.show() parameters.SLOPE_MULTI_WAFER = True parameters.BORDER_ERODE = 3 parameters.MIN_IMPURE_AREA = 0.01 features['_alg_mode'] = 'multi wafer' features['_fn'] = os.path.splitext(os.path.split(fn)[1])[0] crop_props = cropping.crop_wafer(im, create_mask=True) features['corners'] = crop_props['corners'] cropped = cropping.correct_rotation(im, crop_props, pad=False, border_erode=parameters.BORDER_ERODE) multi_wafer.feature_extraction(cropped, crop_props, features=features) multi_wafer.combined_features(features) rgb = multi_wafer.create_overlay(features) f = ip.print_metrics(features, display=display) if display: print "Wafer type: %s" % multi_wafer.WaferType.types[ features['wafer_type']] view = ImageViewer(rgb) ImageViewer(im) view.show() return f, features['im_cropped_u8'], rgb
def run_cropping(files, mode=None, display=True): for e, fn in enumerate(files): print "%s (%d/%d)" % (fn, e, len(files)) features = {} im = ip.open_image(fn).astype(np.float32) if mode == "cell": rotated = cropping.correct_cell_rotation(im, features, already_cropped=False) cropped = cropping.crop_cell(rotated, im, features, width=None, already_cropped=False) elif mode == "mono wafer": features['_alg_mode'] = 'mono wafer' crop_props = cropping.crop_wafer_cz(im, create_mask=True, skip_crop=False) features.update(crop_props) cropped = cropping.correct_rotation( im, crop_props, pad=False, border_erode=parameters.BORDER_ERODE_CZ, fix_chamfer=False) if False: # save crop results pil_im = cropping.draw_crop_box(im, features, mode="pil") fn_root = os.path.splitext(os.path.split(fn)[1])[0] fn_out = os.path.join(r"C:\Users\Neil\Desktop\results\crop", fn_root + ".png") pil_im.save(fn_out) else: rgb = cropping.draw_crop_box(im, features, mode="rgb") pprint(features) view = ImageViewer(rgb) view.show()
def run_single(fn, display=True, downsize=True): if False: mode = "mono" else: mode = "multi" features = {"_cell_type": mode} im = ip.open_image(fn).astype(np.float32) if False: view = ImageViewer(im) view.show() skip_crop = True features_stripes.feature_extraction(im, features, skip_crop) f = ip.print_metrics(features) if display: view = ImageViewer(im) rgb = features_stripes.create_overlay(features) ImageViewer(rgb) view.show() return f
def request(mode, display=False, send_path=False, return_path=False, skip_features=False, return_cropped=True, return_uncropped=False, return_outline=False): ########### # REQUEST # ########### param_names_float = [ "verbose", "already_cropped", "skip_features", "return_cropped", "return_uncropped", "return_outline", "ORIGINAL_ORIENTATION" ] param_vals_float = [ 0, 0, int(skip_features), int(return_cropped), int(return_uncropped), int(return_outline), 1 ] params_dict = dict(zip(param_names_float, param_vals_float)) param_names_str = [] param_vals_str = [] if return_path: param_names_str.append("im_output_path") param_vals_str.append("C:\Users\Neil\Desktop\im_out") images = None # assemble image data print "Mode = %d" % mode if mode == 0: msg = struct.pack('=B', mode) # send to server sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((HOST, PORT)) send_data(sock, msg) response = get_data(sock, 1) success = struct.unpack('B', response)[0] print "Success: %s" % str(success == 0) return [], [] if mode == 10: fn = r"C:\Users\Neil\BT\Data\R2 FFT\multi\raw 10 sec.tif" elif mode == 40: if int(params_dict['already_cropped']) == 0: fn = r"C:\Users\Neil\BT\Data\blocks\B4\693 - PL Image B4 W2 4V (PL Image - Composite).tif" else: fn = r"C:\Users\Neil\BT\Data\blocks\2015-08\tifs\120815_ISE_E_nf_14A_22C_PL_600000-dark&FFcor_cropped.tif" elif mode in [70, 71]: if mode == 70: fn = r"C:\Users\Neil\BT\Data\slugs\zhonghuan\tifs\219609 - 160-1-6 (Uncalibrated PL Image).tif" elif mode == 71: fn = r"C:\Users\Neil\BT\Data\slugs\pseudo round\2861 - THICK SAMPLE TEST-2 %28Uncalibrated PL Image%29.tif" param_names_float += ['rds_percent', 'slug_radius'] param_vals_float += [50, 0] elif mode == 80: # PERC mono cell # fn = r"C:\Users\Neil\BT\Data\C3\perc\mono\BAC_1024_100\20150910_122155.612_BAC_1024_100_201.tif" # fn = r"C:\Users\Neil\BT\Data\cropping_test_set\cells\tifs\plg.meas.cell.plqrs.a.img.tif" fn = r"C:\Users\Neil\BT\Data\C3\perc\mono\BAC_1024_100\20150910_122155.612_BAC_1024_100_201.tif" if int(params_dict['already_cropped']) == 1: fn = os.path.join(r"C:\Users\Neil\BT\Data\cropped", os.path.split(fn)[1]) elif mode == 81: # PERC multi cell fn = r"C:\Users\Neil\BT\Data\C3\perc\multi\Point\1329 - REC test E1 PL Image (PL Open-circuit Image).tif" if int(params_dict['already_cropped']) == 1: fn = os.path.join(r"C:\Users\Neil\BT\Data\cropped", os.path.split(fn)[1]) elif mode == 82: # mono cell fn = r"C:\Users\Neil\BT\Data\C3\mono\INES_c-Si_100_1024\20150908_175300.680_INES_c-Si_100_1024_46.tif" if True: param_names_float.append("no_post_processing") param_vals_float.append(1) if int(params_dict['already_cropped']) == 1: fn = os.path.join(r"C:\Users\Neil\BT\Data\cropped", os.path.split(fn)[1]) elif mode == 83: # multi cell fn = r"C:\Users\Neil\BT\Data\C3\multi\misc\20170302T110107.328_Batch 3_ID467.tif" # fn = r"C:\Users\Neil\BT\Data\C3\multi\Astronergy\20170831T153538.783_zt-DJ--5_ID-8.tif" if int(params_dict['already_cropped']) == 1: fn = os.path.join(r"C:\Users\Neil\BT\Data\cropped", os.path.split(fn)[1]) elif mode == 84: # mono wafer # fn = r"C:\Users\Neil\BT\Data\CIC\cracks\tifs\S0067_20140821.131519_VI_PL21F_ID10063_GRADEB1_BIN2_raw_image.tif" # fn = r"C:\Users\Neil\BT\Data\mono wafer\2015-10-26\S0041_20151026.161500_longi DCA 1-2_ID2_GRADEA2_BIN4_raw.tif" fn = r"C:\Users\Neil\Desktop\outlines\mode84.tif" if int(params_dict['already_cropped']) == 1: fn = os.path.join(r"C:\Users\Neil\BT\Data\cropped", os.path.split(fn)[1]) elif mode == 85: # multi wafer fn = r"C:\Users\Neil\BT\Data\overlay test set\unnormalised\tifs\S0050_20120516.193034__ID10586 - Cor.tiff" if int(params_dict['already_cropped']) == 1: fn = os.path.join(r"C:\Users\Neil\BT\Data\cropped", os.path.split(fn)[1]) elif mode == 86: # X3 fn = r"C:\Users\Neil\BT\Data\X3\mono PERC\20161024_103301.320_a_00058101.tif" if int(params_dict['already_cropped']) == 1: fn = os.path.join(r"C:\Users\Neil\BT\Data\cropped", os.path.split(fn)[1]) param_names_float += [ "num_stripes", "multi", "no_stripe_images", "ORIGINAL_ORIENTATION" ] param_vals_float += [5, 0, 1, 1] elif mode == 87: # mono stripe fn = r"C:\Users\Neil\BT\Data\stripe\2017-09-07 Baccini 1 in 1\S0041_20170907.120710_Baccini 1 in 1 test_ID6_raw.tif" elif mode == 88: # multi stripe fn = r"C:\Users\Neil\BT\Data\stripe\2017-09-07 Baccini 1 in 1\S0041_20170907.120917_Baccini 1 in 1 test_ID7_raw.tif" elif mode == 89: # QC-C3 #fn = r"C:\Users\Neil\BT\Data\half processed\1390 - Tet P4604 PLOC 0.2s 1Sun (Uncalibrated PL Image).tif" fn = r"C:\Users\Neil\Desktop\outlines\mode89.tif" elif mode in [90, 901]: # plir if True: fn1 = r"C:\Users\Neil\BT\Data\blocks\PLIR\Trina\2016-05-12\5.4V W (Uncalibrated PL Image) west short pass.tif" fn2 = r"C:\Users\Neil\BT\Data\blocks\PLIR\Trina\2016-05-12\5.4V W (Uncalibrated PL Image) west long pass.tif" fn3 = r"C:\Users\Neil\BT\Data\blocks\PLIR\Trina\2016-05-12\5.4V W (Uncalibrated PL Image) west no filter.tif" else: fn1 = r"C:\Users\Neil\Desktop\B35 files for B3\Face 1\plg.meas.block.b3bl.north.shortpass.img.tif" fn2 = r"C:\Users\Neil\Desktop\B35 files for B3\Face 1\plg.meas.block.b3bl.north.raw.img.tif" fn3 = r"C:\Users\Neil\Desktop\B35 files for B3\Face 1\plg.meas.block.b3bl.north.longpass.img.tif" im_sp = ip.open_image(fn1, cast_long=False).astype(np.uint16) im_lp = ip.open_image(fn2, cast_long=False).astype(np.uint16) im_pl = ip.open_image(fn3, cast_long=False).astype(np.uint16) if True: images = {'im_sp': im_sp, 'im_lp': im_lp, 'im_pl': im_pl} else: images = {'im_sp': im_sp, 'im_lp': im_lp} fn_xfer = r"C:\Users\Neil\BT\Data\2017-09-06 TransferFunctions.TXT" vals = block.load_transfer(fn_xfer) images['im_xfer'] = vals if mode == 901: del images['im_pl'] mode = 90 elif mode == 92: # brick markers fn = r"C:\Users\Neil\Desktop\20160826\1267 - Ref-C-25chiller-2 (North - Shortpass Image).tif" elif mode == 95: # resolution fn = r"C:\Users\Neil\BT\Data\2017-09-06 new calibration target.tif" elif mode == 100: if True: fn_pl = r"C:\Users\Neil\BT\Data\modules\WIN-555\WIN-555_LR0245_P93_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\BT\Data\modules\WIN-555\WIN-555_LR0160_CV43.00_2x2_EL.tif" else: fn_pl = r"C:\Users\Neil\Desktop\Processed\CNY-098\CNY-098_G00_LR0090_P93_2x2_OCPL.tif" fn_el = r"C:\Users\Neil\Desktop\Processed\CNY-098\CNY-098_G00_LR0090_CC10.80_2x2_EL.tif" im_pl = ip.open_image(fn_pl).astype(np.uint16) im_el = ip.open_image(fn_el).astype(np.uint16) images = {'im_pl': im_pl} # , 'im_el': im_el} param_names_float += ["ORIGINAL_ORIENTATION"] param_vals_float += [0] elif mode == 255: msg = struct.pack('B', 255) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((HOST, PORT)) send_data(sock, msg) return [], [] else: print "Unknown mode" sys.exit() if images is None: # open im_pl im = ip.open_image(fn).astype(np.uint16) if False: im = im.T images = {'im_pl': im} if False and images['im_pl'].shape[0] > 800: print 'WARNING: Image resized' images['im_pl'] = ndimage.zoom(images['im_pl'], 0.25) if False: view = ImageViewer(images['im_pl']) view.show() # gather images image_names = ','.join(images.keys()) msg = struct.pack('=BI', mode, len(image_names)) msg += image_names for image_name, im in images.iteritems(): assert image_name[:2] in ['bl', 'mk', 'im', 'ov'] if image_name == 'im_xfer': bit_depth = 32 else: bit_depth = 16 binning = 1 if send_path: # pass by path msg += struct.pack('=HHBBB', 0, 0, bit_depth, binning, len(fn)) msg += fn else: # pass data msg += struct.pack('=HHBB', im.shape[1], im.shape[0], bit_depth, binning) msg += im.ravel().tostring() if False: param_names_float = [] param_vals_float = [] param_names_str = [] param_vals_str = [] # numerical parameter list param_names = ','.join(param_names_float) msg += struct.pack('=I', len(param_names)) msg += param_names msg += np.array(param_vals_float, np.float32).tostring() # string input parameters param_names = ','.join(param_names_str) msg += struct.pack('=I', len(param_names)) msg += param_names param_vals = ','.join(param_vals_str) msg += struct.pack('=I', len(param_vals)) msg += param_vals t1 = timeit.default_timer() # send to server sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((HOST, PORT)) send_data(sock, msg) ############ # RESPONSE # ############ features = {} # get response code response = get_data(sock, 1) success = struct.unpack('B', response)[0] if success != 0: print("Error occurred: %d" % success) sys.exit() # get images & masks data = get_data(sock, 4) image_names_length = struct.unpack('=I', data)[0] if image_names_length > 0: image_names = get_data(sock, image_names_length).split(",") for im_name in image_names: if im_name[:3] not in ['bl_', 'mk_', 'im_', 'ov_']: print "ERROR: Invalid image name: %s" % im_name sys.exit() data = get_data(sock, 6) im_w, im_h, bit_depth, binning = struct.unpack('=hhBB', data) if im_w == 0 or im_h == 0: # read from disk fn_len = struct.unpack('=B', get_data(sock, 1))[0] fn = str(get_data(sock, fn_len)) features[im_name] = ip.open_image(fn) else: if bit_depth == 8: data = get_data(sock, 4) encoding_length = struct.unpack('I', data)[0] png_data = get_data(sock, encoding_length) features[im_name] = ip.decode_png(png_data) num_pixels = features[im_name].shape[0] * features[ im_name].shape[1] print "%s compression: %0.1f%%" % ( im_name, (100 * encoding_length) / float(num_pixels)) elif bit_depth == 16: pixel_data = get_data(sock, im_w * im_h * 2) features[im_name] = np.frombuffer(pixel_data, np.uint16).reshape( im_h, im_w) elif bit_depth == 32: pixel_data = get_data(sock, im_w * im_h * 4) features[im_name] = np.frombuffer(pixel_data, np.float32).reshape( im_h, im_w) else: print '****', im_name else: image_names = [] # get numerical metric response = get_data(sock, 4) string_size = struct.unpack('I', response)[0] if string_size > 0: feature_names = get_data(sock, string_size) feature_names = feature_names.split(',') num_features = len(feature_names) bytes_expected = num_features * 4 feature_data = get_data(sock, bytes_expected) feature_data = list(np.frombuffer(feature_data, np.float32)) else: feature_names = [] feature_data = [] # get string metrics string_size = struct.unpack('I', get_data(sock, 4))[0] if string_size > 0: feature_names += get_data(sock, string_size).split(',') string_size = struct.unpack('I', get_data(sock, 4))[0] if string_size > 0: feature_data += get_data(sock, string_size).split(',') metric_vals = zip(feature_names, feature_data) ################### # DISPLAY RESULTS # ################### metrics = {} for i in range(len(feature_names)): features[feature_names[i]] = feature_data[i] metrics[feature_names[i]] = feature_data[i] print "Returned images:" for image_name in image_names: print " %s" % image_name print "Metrics:" pprint(metrics) t2 = timeit.default_timer() print('Total time: %0.03f seconds' % (t2 - t1)) rgb = None view = None if "im_cropped_u8" in features: if mode == 80: rgb = perc.create_overlay(features) elif mode == 81: rgb = perc.create_overlay_multi(features) elif mode == 82: rgb = cz_cell.create_overlay(features) elif mode == 83: rgb = multi_cell.create_overlay(features) elif mode == 84: rgb = cz_wafer.create_overlay(features) elif mode == 85: if 'skip_features' not in params_dict or params_dict[ 'skip_features'] != 1: rgb = multi_wafer.create_overlay(features) elif mode == 86: rgb = x3.create_overlay(features) if False: # save cropped version for testing fn_cropped = os.path.join(r"C:\Users\Neil\BT\Data\cropped", os.path.split(fn)[1]) ip.save_image(fn_cropped, features['im_cropped_u16']) if display and mode != 100: print 'Images:' if 'im_pl' in images: print ' 1: Input PL image' im = images['im_pl'] view = ImageViewer(im) e = 2 for feature in features.keys(): if (feature.startswith('im_') or feature.startswith('mk_') or feature.startswith('ov_') or feature.startswith('bl_')): print ' %d: %s' % (e, feature) ImageViewer(features[feature]) e += 1 if rgb is not None: print ' %d: Colour overlay' % e e += 1 ImageViewer(rgb) if view is not None: view.show() return image_names, metric_vals
def handle(self): reload(parameters) # self.request is the TCP socket connected to the client # get the image dimensions, which is contain in the first two # unsigned shorts (two bytes each) start_time = str(datetime.datetime.now()) mode = struct.unpack('B', self.get_data(1))[0] print('Request received at %s (mode=%d)' % (start_time, mode)) if mode == 255: print(' Mode: Exit') self.server.shutdown() return if mode == 0: msg = struct.pack('=B', 0) self.send_data(msg) return # get input images image_desc_length = struct.unpack('=I', self.get_data(4))[0] if image_desc_length == 0: print "ERROR: No images passed as input" return image_names_in = self.get_data(image_desc_length).split(',') images = {} for im_name in image_names_in: data = self.get_data(6) width, height, bit_depth, binning = struct.unpack('=HHBB', data) num_pixels = width * height if num_pixels == 0: # read from disk fn_len = struct.unpack('=B', self.get_data(1))[0] fn = str(self.get_data(fn_len)) images[im_name] = ip.open_image(fn) else: if bit_depth == 8: pixel_data = self.get_data(num_pixels) im_data = np.frombuffer(pixel_data, np.uint8) elif bit_depth == 16: pixel_data = self.get_data(num_pixels * 2) im_data = np.frombuffer(pixel_data, np.uint16) elif bit_depth == 32: pixel_data = self.get_data(num_pixels * 4) im_data = np.frombuffer(pixel_data, np.float32) images[im_name] = im_data.reshape(height, width).astype(np.float32) # get numerical parameters data = self.get_data(4) param_desc_length = struct.unpack('=I', data)[0] if param_desc_length > 0: param_names = self.get_data(param_desc_length).split(",") num_params = len(param_names) param_data = self.get_data(num_params * 4) params_array = list(np.frombuffer(param_data, np.float32)) else: param_names = [] params_array = [] # get string parameters data = self.get_data(4) param_desc_length = struct.unpack('=I', data)[0] if param_desc_length > 0: param_names += self.get_data(param_desc_length).split(",") param_vals_length = struct.unpack('=I', self.get_data(4))[0] params_array += self.get_data(param_vals_length).split(",") # override defaults in parameters.py for pn, pv in zip(param_names, params_array): if pn.upper() in dir(parameters): setattr(parameters, pn.upper(), pv) # store input parameters in the features dict param_names = ['input_param_' + pn for pn in param_names] features = dict(zip(param_names, params_array)) if 'input_param_already_cropped' in features and int( features['input_param_already_cropped']) == 1: already_cropped = True else: already_cropped = False if 'input_param_return_uncropped' in features and int( features['input_param_return_uncropped']) == 1: return_uncropped = True else: return_uncropped = False if 'input_param_return_cropped' in features and int( features['input_param_return_cropped']) == 0: return_cropped = False else: return_cropped = True if 'input_param_return_outline' in features and int( features['input_param_return_outline']) == 1: return_outline = True else: return_outline = False # call image processing algorithm try: if mode == 10: print(' Mode: Hash Pattern correction') im_raw = images['im_pl'].astype(np.float32) im_corrected = FF.correct_hash_pattern(im_raw) features['im_corrected_u16'] = im_corrected.astype(np.uint16) elif mode == 40: print(' Mode: Block processing') im = images['im_pl'].astype(np.float32) block.feature_extraction(im, features, crop=not already_cropped) features['crop_left'] = features['_crop_bounds'][0] features['crop_right'] = features['_crop_bounds'][1] features['crop_top'] = features['_crop_bounds'][2] features['crop_bottom'] = features['_crop_bounds'][3] features['bl_cropped_u8'] = np.zeros_like( features['im_cropped_u8'], np.uint8) if return_uncropped or return_outline: left, right, top, bottom = features['_crop_bounds'] mask = np.ones_like(images['im_pl'], np.uint8) mask[top:bottom, left:right] = 0 if abs(features['crop_rotation']) > 0.01: h, w = mask.shape rot_mat = cv2.getRotationMatrix2D( (w // 2, h // 2), features['crop_rotation'] * -1, 1.0) mask = cv2.warpAffine(mask, rot_mat, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE ) # .astype(np.uint8) if return_uncropped: features['bl_uncropped_u8'] = mask elif mode in [70, 71]: print(' Mode: Slugs') im = images['im_pl'].astype(np.float32) if 'input_param_rds_percent' not in features: features['param_rds_percent'] = 50 else: features['param_rds_percent'] = int( features['input_param_rds_percent']) if 'param_radius_prior' not in features: features['param_radius_prior'] = 0 else: features['param_radius_prior'] = int( features['input_param_slug_radius']) slugs.feature_extraction(im, features) update_corner_features(features, features) features['im_cropped_u8'] = (ip.scale_image(images['im_pl']) * 255).astype(np.uint8) features['im_cropped_u16'] = images['im_pl'].astype(np.uint16) mask = features['bl_uncropped_u8'] if not return_uncropped: del features['bl_uncropped_u8'] elif mode in [84, 85, 89]: if mode == 84: print(' Mode: Mono wafer') im = images['im_pl'].astype(np.float32) features['_alg_mode'] = 'mono wafer' crop_props = cropping.crop_wafer_cz( im, create_mask=True, skip_crop=already_cropped) features['corners'] = crop_props['corners'] features['_wafer_middle_orig'] = crop_props['center'] cropped = cropping.correct_rotation( im, crop_props, pad=False, border_erode=parameters.BORDER_ERODE_CZ, fix_chamfer=False) cz_wafer.feature_extraction(cropped, crop_props, features=features) update_corner_features(features, crop_props) elif mode == 85: print(' Mode: Multi wafer') im = images['im_pl'].astype(np.float32) features['_alg_mode'] = 'multi wafer' if not already_cropped: crop_props = cropping.crop_wafer(im, create_mask=True) features['corners'] = crop_props['corners'] cropped = cropping.correct_rotation( im, crop_props, pad=False, border_erode=parameters.BORDER_ERODE) else: crop_props = {} crop_props['estimated_width'] = im.shape[0] crop_props['center'] = (im.shape[0] / 2, im.shape[1] / 2) crop_props['corners'] = [ [0, 0], [0, im.shape[1]], [im.shape[0], im.shape[1]], [im.shape[0], 0], ] crop_props['corners_floats'] = crop_props['corners'] crop_props['estimated_rotation'] = 0 crop_props['mask'] = np.ones_like(im, np.uint8) cropped = im multi_wafer.feature_extraction(cropped, crop_props, features=features) multi_wafer.combined_features(features) update_corner_features(features, crop_props) elif mode == 89: print(' Mode: QC-C3') features['_alg_mode'] = 'qc' im = images['im_pl'].astype(np.float32) crop_props = qc.feature_extraction(im, features) if return_uncropped: features['bl_uncropped_u8'] = crop_props['mask'] elif mode in [80, 81, 82, 83, 86, 87, 88]: if mode == 80: print(' Mode: PERC mono') im = images['im_pl'].astype(np.float32) features['_alg_mode'] = 'perc mono' perc.feature_extraction(im, features, already_cropped=already_cropped) elif mode == 81: print(' Mode: PERC multi') im = images['im_pl'].astype(np.float32) features['_alg_mode'] = 'perc multi' perc.feature_extraction_multi( im, features, already_cropped=already_cropped) elif mode == 82: print(' Mode: Mono cells') im = images['im_pl'].astype(np.float32) features['_alg_mode'] = 'mono cell' cz_cell.feature_extraction(im, features, skip_crop=already_cropped) elif mode == 83: print(' Mode: Multi cells') im = images['im_pl'].astype(np.float32) features['_alg_mode'] = 'multi cell' multi_cell.feature_extraction( im, features, already_cropped=already_cropped) elif mode == 86: print(' Mode: X3') features['_alg_mode'] = 'x3' im = images['im_pl'].astype(np.float32) x3.feature_extraction(im, features, already_cropped=already_cropped) elif mode == 87: print(' Mode: Stripe (mono)') features['_alg_mode'] = 'stripe' features['_cell_type'] = 'mono' im = images['im_pl'].astype(np.float32) stripe.feature_extraction(im, features, skip_crop=already_cropped) elif mode == 88: print(' Mode: Stripe (multi)') features['_alg_mode'] = 'stripe' features['_cell_type'] = 'multi' im = images['im_pl'].astype(np.float32) stripe.feature_extraction(im, features, skip_crop=already_cropped) update_corner_features(features, features) if return_uncropped: mask = features['bl_cropped_u8'] im_h, im_w = im.shape if 'cell_rotated' in features and features['cell_rotated']: if parameters.ORIGINAL_ORIENTATION: mask = mask[:, ::-1].T im_h = im.shape[1] im_w = im.shape[0] # undo rotation and cropping mask = np.pad(mask, ((features['crop_top'], im_h - features['crop_bottom']), (features['crop_left'], im_w - features['crop_right'])), mode='constant', constant_values=((1, 1), (1, 1))) # created rotated version of full image mask_rotated = np.empty(im.shape, np.float32) h, w = mask.shape if 'cell_rotated' not in features or not features[ 'cell_rotated']: rot_mat = cv2.getRotationMatrix2D( (w // 2, h // 2), -features['crop_rotation'], 1.0) else: rot_mat = cv2.getRotationMatrix2D( (h // 2, h // 2), -features['crop_rotation'], 1.0) cv2.warpAffine(mask.astype(np.float32), rot_mat, (im.shape[1], im.shape[0]), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, dst=mask_rotated, borderValue=1) #print mask.shape, im.shape assert mask_rotated.shape == im.shape features['bl_uncropped_u8'] = np.round( mask_rotated).astype(np.uint8) elif mode == 90: print(' Mode: plir') im_sp = images['im_sp'].astype(np.float32) im_lp = images['im_lp'].astype(np.float32) if 'im_xfer' not in images: print "ERROR: Transfer functions not found" self.send_data(struct.pack('=B', 6)) return spline_plir, spline_nf, spline_sp, spline_lp = block.interpolate_transfer( images['im_xfer']) if 'im_pl' in images: im_pl = images['im_pl'].astype(np.float32) plc_found = block.plir(im_sp, im_lp, im_pl, features, spline_plir, spline_nf) else: plc_found = block.plir2(im_sp, im_lp, features, spline_plir, spline_sp) if not plc_found: self.send_data(struct.pack('=B', 5)) return if return_uncropped or return_outline: left, right, top, bottom = features['_crop_bounds'] if 'im_pl' in images: left *= 2 right *= 2 top *= 2 bottom *= 2 mask = np.ones_like(images['im_pl'], np.uint8) else: mask = np.ones_like(images['im_sp'], np.uint8) mask[top:bottom, left:right] = 0 if abs(features['crop_rotation']) > 0.01: h, w = mask.shape rot_mat = cv2.getRotationMatrix2D( (w // 2, h // 2), features['crop_rotation'] * -1, 1.0) mask = cv2.warpAffine(mask, rot_mat, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE ) # .astype(np.uint8) if return_uncropped: features['bl_uncropped_u8'] = mask elif mode == 92: print(' Mode: Distance between brick markers') im = images['im_pl'].astype(np.float32) block.MarkerLineDist(im, features) elif mode == 95: print(' Mode: Pixels per mm') im = images['im_pl'].astype(np.float32) resolution.resolution(im, features) elif mode == 100: print(' Mode: M1') if 'im_el' in images: im_el = images['im_el'].astype(np.float32) else: im_el = None im_pl = images['im_pl'].astype(np.float32) m1.feature_extraction(im_pl, im_el, features) else: print("ERROR: Mode %d not supported" % mode) self.send_data(struct.pack('=B', 1)) return if not return_cropped: for im_name in [ 'im_cropped_u16', 'im_cropped_u8', 'bl_cropped_u8', "im_cropped_sp_u8", 'im_cropped_nf_u8', 'im_cropped_sp_u16', 'im_cropped_nf_u16', 'im_cropped_lp_u16' ]: if im_name in features: del features[im_name] if return_outline: if mode in [40, 70, 90]: binary_struct = ndimage.generate_binary_structure(2, 1) foreground = 1 - mask outline = foreground - ndimage.binary_erosion( foreground, binary_struct) features['bl_crop_outline_u8'] = outline.astype(np.uint8) else: features['bl_crop_outline_u8'] = cropping.draw_crop_box( im, features, mode="mask") except cropping.WaferMissingException: self.send_data(struct.pack('=B', 2)) return except cell.MissingBusbarsException: self.send_data(struct.pack('=B', 3)) return except cell.CellFingersException: self.send_data(struct.pack('=B', 4)) return except: traceback.print_exc(file=sys.stdout) self.send_data(struct.pack('=B', 1)) return # success msg = struct.pack('=B', 0) self.send_data(msg) # return images image_names = [] for f in features.keys(): if f.split('_')[-1] not in ['u8', 'u16', 'f32'] or f[0] == '_': continue if f[:3] not in ['bl_', 'mk_', 'im_', 'ov_']: print "ERROR: invalid image name: %s" % f image_names.append(f) image_names.sort() image_names_send = ','.join(image_names) self.send_data(struct.pack('I', len(image_names_send))) self.send_data(image_names_send) for im_name in image_names: fields = im_name.split('_') if fields[-1] == "u8": bit_depth = 8 elif fields[-1] == "u16": bit_depth = 16 elif fields[-1] == "f32": bit_depth = 32 # convert binary masks from 0,1 to 0,255 if fields[0] == 'mk' and bit_depth == 8: features[im_name] *= 255 if ('input_param_im_output_path' in features and len(features['input_param_im_output_path']) > 0 and bit_depth in [8, 16]): # send back as path. msg = struct.pack('=hhBB', 0, 0, 0, 1) if bit_depth == 8: ext = '.png' else: ext = '.tif' fn_out = os.path.join(features['input_param_im_output_path'], im_name + ext) ip.save_image(fn_out, features[im_name], scale=False) fn_len = len(fn_out) msg += struct.pack('=B', fn_len) msg += fn_out else: # image data height, width = features[im_name].shape binning = 1 msg = struct.pack('=hhBB', width, height, bit_depth, binning) if fields[-1] == "u8": png = ip.encode_png(features[im_name]) msg += struct.pack('=I', len(png)) msg += png elif fields[-1] in ["u16", "f32"]: msg += features[im_name].tostring() self.send_data(msg) # numerical features feature_names = [] feature_vals = [] for k in features.keys(): if (k in ['cropped', 'corners', 'filename', 'center'] or k.startswith("bl_") or k.startswith('_') or k.startswith("mask_") or k.startswith("mk_") or k.startswith("im_") or k.startswith("ov_")): continue if type(features[k]) is str: continue feature_names.append(k) feature_names.sort() for feature in feature_names: feature_vals.append(float(features[feature])) feature_names = ','.join(feature_names) feature_vals = np.array(feature_vals, np.float32) bytes_to_send = len(feature_names) self.send_data(struct.pack('=I', bytes_to_send)) self.send_data(feature_names) msg = feature_vals.ravel().tostring() self.send_data(msg) # string features feature_names = [] feature_vals = [] for k in features.keys(): if k.startswith('_'): continue if type(features[k]) is not str: continue feature_names.append(k) feature_names.sort() for feature in feature_names: feature_vals.append(features[feature]) feature_names = ','.join(feature_names) feature_vals = ','.join(feature_vals) bytes_to_send = len(feature_names) self.send_data(struct.pack('=I', bytes_to_send)) if bytes_to_send > 0: self.send_data(feature_names) bytes_to_send = len(feature_vals) self.send_data(struct.pack('=I', bytes_to_send)) if bytes_to_send > 0: self.send_data(feature_vals) return
def correct_waffle(im): # load FFT of fn = "fft_hash_pattern.npy" if os.path.isfile(fn): fft_pattern = np.load(fn) else: # isolate waffle pattern ff = ip.open_image( r"C:\Users\Neil\Dropbox (Personal)\BT\Data\R2 FFT\FF Wafer Images\std - ff.tif" ).astype(np.float32) / 4.0 stack = ip.open_image( r"C:\Users\Neil\Dropbox (Personal)\BT\Data\R2 FFT\FF Wafer Images\SUM_Stack.tif" ).astype(np.float32) / 4.0 pattern = stack - ff pattern -= pattern.mean() pattern /= pattern.std() # FFT fft_pattern = fftshift(cv2.dft(pattern, flags=cv2.DFT_COMPLEX_OUTPUT)) # smooth fft_pattern_mag = cv2.magnitude(fft_pattern[:, :, 0], fft_pattern[:, :, 1]) fft_pattern_smooth = cv2.GaussianBlur(cv2.medianBlur(fft_pattern_mag, ksize=5), ksize=(0, 0), sigmaX=5) fft_pattern = cv2.log(fft_pattern_smooth) # remove non-peaks fft_pattern -= np.mean(fft_pattern) fft_pattern[fft_pattern < 0] = 0 np.save(fn, fft_pattern) # mask for middle '+' mask_edges = np.zeros_like(fft_pattern, np.bool) T = 2 h, w = mask_edges.shape mask_edges[h // 2 - T:h // 2 + T + 1, :] = True mask_edges[:, w // 2 - T:w // 2 + T + 1] = True RADIUS = 50 ys, xs = draw.circle(h // 2, w // 2, RADIUS) mask_edges[ys, xs] = True if False: # view = ImageViewer(fft_pattern_unmasked) view = ImageViewer(fft_pattern) view.show() sys.exit() # fft of wafer image fft = fftshift(cv2.dft(im, flags=cv2.DFT_COMPLEX_OUTPUT)) fft_mag = cv2.magnitude(fft[:, :, 0], fft[:, :, 1]) fft_phase = cv2.phase(fft[:, :, 0], fft[:, :, 1]) fft_log = cv2.log(fft_mag) fft_wafer_smooth = cv2.GaussianBlur(cv2.medianBlur(fft_log, ksize=5), ksize=(0, 0), sigmaX=5) if True: view = ImageViewer(fft_pattern) view = ImageViewer(fft_wafer_smooth) view.show() sys.exit() # find fit between background of waffle FFT and wafer FFT # 1. fit background background_mask = ((fft_pattern == 0) & (~mask_edges)) peak_mask = ((fft_pattern > 0.2) & (~mask_edges)) if False: view = ImageViewer(background_mask) view = ImageViewer(peak_mask) view.show() sys.exit() # 2. fit peaks pattern_vals = fft_pattern[peak_mask] wafer_vals = fft_wafer_smooth[peak_mask] def dist(params, pattern_vals, wafer_vals): shift, scale = params pattern_vals_fit = (pattern_vals * scale) + shift return ((pattern_vals_fit - wafer_vals)**2).mean() from scipy import optimize params = (wafer_vals.mean(), 1) t1 = timeit.default_timer() shift, scale = optimize.fmin(dist, params, args=(pattern_vals, wafer_vals)) t2 = timeit.default_timer() if False: print "Optimization time: ", t2 - t1 print shift, scale fft_fit = (fft_pattern * scale) + shift vmin = min(fft_fit.min(), fft_wafer_smooth.min()) vmax = max(fft_fit.max(), fft_wafer_smooth.max()) view = ImageViewer(fft_fit, vmin=vmin, vmax=vmax) view = ImageViewer(fft_wafer_smooth, vmin=vmin, vmax=vmax) view.show() sys.exit() # apply correction correction = fft_pattern * -scale correction[mask_edges] = 0 corrected_log = fft_log + correction corrected_mag = np.e**corrected_log fft_real = np.cos(fft_phase) * corrected_mag fft_imag = np.sin(fft_phase) * corrected_mag fft_corrected = np.dstack((fft_real, fft_imag)) im_corrected = cv2.idft(ifftshift(fft_corrected), flags=cv2.DFT_REAL_OUTPUT | cv2.DFT_SCALE) if False: view = ImageViewer(im) view = ImageViewer(im_corrected) view.show() sys.exit() # create a mask for the + pattern (to prevent ringing at edges) # find rotation using cropping if True: try: crop_props = cropping.crop_wafer(im, create_mask=True) pixel_ops.CopyMaskF32(im, im_corrected, crop_props['mask'], 0) except: print("WARNING: Crop failed") return im return im_corrected