from __future__ import division import csv from PIL import Image import sys import image_util import math (train_set, train_label, count_label) = image_util.load_dataset(image_util.DS1_TRAIN_PATH, image_util.DS1_LABEL_SIZE) first_entropy = 0 for i in range(image_util.DS1_LABEL_SIZE): p = count_label[i] / image_util.DS1_TRAIN_SIZE first_entropy = first_entropy - p * math.log(p, 2) tree = { "index": -1, "outcome_0": -1, "outcome_1": -1, "node_0": [], "node_1": [], "parent": None, "note": -1 } stack_of_features = [] stack_of_nodes = [] first_set = [] for i in range(image_util.DS1_TRAIN_SIZE):
from __future__ import division import csv from PIL import Image import sys import image_util train_label = [] train_set = [] train_count_label = [] (train_set, train_label, count_label) = image_util.load_dataset(image_util.DS2_TRAIN_PATH, image_util.DS2_LABEL_SIZE) prior_els = [] for i in range(len(count_label)): el = [] for j in range(len(train_set[0])): el.append(0) prior_els.append(el) for i in range(len(train_set)): for j in range(len(train_set[0])): prior_els[train_label[i]][j] = prior_els[train_label[i]][j] + train_set[i][j] val_label = [] val_set = [] val_count_label = [] (val_set, val_label, val_count_label) = image_util.load_dataset(image_util.DS2_VAL_PATH, image_util.DS2_LABEL_SIZE) correct_count = 0 for row in range(image_util.DS2_VAL_SIZE):