def create_dataset(dataset_folder, thumbs_folder, ext, num_clusters, thumb_size): for pathfile in glob.iglob(dataset_folder + '/**/*', recursive=True): filename = basename(pathfile) if filename.endswith(tuple(ext)): image = image_utils.open_image(pathfile, "RGB") color, image = dominant_color.find_dominant_color_and_generate_thumb(image, filename, thumbs_folder, num_clusters, thumb_size, True) dataset_thumbs.write_pic(color.red, color.green, color.blue, filename) return True
def get_candidate_image(candidate_images, thumbs_folder): """ :param candidate_images: array of filename :param thumbs_folder: folder containing thumbnails """ output = None while not output and candidate_images: filename_candidate = candidate_images.pop(random.randrange(len(candidate_images))) output = image_utils.open_image(thumbs_folder + filename_candidate, "RGB") return output
def to_gray_and_save_pic(uri, elaborated_folder): image = image_utils.open_image(uri, "RGB") if not image: return False else: if image.format == "PNG": image = image.convert('LA') else: image = image.convert('L') image_utils.save_image(image, basename(uri), elaborated_folder) return True
def create_dataset(dataset_folder, thumbs_folder, ext, num_clusters, thumb_size): for pathfile in glob.iglob(dataset_folder + '/**/*', recursive=True): filename = basename(pathfile) if filename.endswith(tuple(ext)): image = image_utils.open_image(pathfile, "RGB") color, image = dominant_color.find_dominant_color_and_generate_thumb( image, filename, thumbs_folder, num_clusters, thumb_size, True) dataset_thumbs.write_pic(color.red, color.green, color.blue, filename) return True
def __init__(self, path2data, path2Individual, path2postures, number_sequences, size, use_memory, number_data, transforms_target_label=None, transforms_individual=None): self.sequence_number = number_sequences self.size = size self.transforms_target_label = transforms_target_label self.transforms_individual = transforms_individual self.use_memory = use_memory self.target_path, self.label_path = self.get_target_label_path(path2data, path2Individual, path2postures, number_data) self.path2Image_map = {} if use_memory: path2Individual = os.path.join(path2data, path2Individual) path2postures = os.path.join(path2data, path2postures) iu.folder_to_map(path2Individual, self.path2Image_map, lambda image_path: iu.open_image(image_path, self.size), depth=2) iu.folder_to_map(path2postures, self.path2Image_map, lambda image_path: iu.open_image(image_path, self.size), depth=2)
def to_sepia_and_save_pic(uri, elaborated_folder): """ Convert before in grayscale and then in sepia """ img = image_utils.open_image(uri, "RGB") if img: orig_mode = img.mode if orig_mode != "L": img = img.convert("L") sepia = make_linear_ramp() img.putpalette(sepia) img = img.convert(orig_mode) image_utils.save_image(img, basename(uri), elaborated_folder) return True else: return False
def resize_and_save_pic(uri, width, height, elaborated_folder): image = image_utils.open_image(uri, "RGB") image = image_utils.resize_image(image, (width,height)) image_utils.save_image(image, basename(uri), elaborated_folder) return True