def print_less_images_from_file(file_path, eval_path, desired_measures=['dice']): # CSV Header Structure #Structure, Cardiac_Phase, Measure, Performance, Value, File #Prepare folders for each measure source_path = eval_path + "/../" print_path = source_path + "/image_save/" nii_types = ['ground_truth', 'prediction', 'image'] with open(file_path, 'r') as csvfile: reader = csv.DictReader(csvfile) for row in reader: if row['Measure'] in desired_measures: #folder_path folder_path = print_path + "/" + \ row['Cardiac_Phase'] + "/" + \ row['Measure'] + "/" + \ row['Performance'] + "/" os.makedirs(folder_path, exist_ok=True) #get patient number r = 'patient060_ED.nii.gz' p_num = r.split('_')[0][-3:] #row['File'].split('_')[0][-3:] logging.info("Saving image for patient {}".format(p_num)) for nii_type in nii_types: #load in file_path = source_path + nii_type + "/" + r #row['File'] nii_file = nib.load(file_path).get_data() slices = np.multiply([0.2, 0.5, 0.8], nii_file.shape[-1]).astype(np.int) for img_idx in slices: image_name = "{}-{}_{:3f}_{}-{}_{}".format( row['Performance'], row['Measure'], float(row['Value']), p_num, img_idx, nii_type) if nii_type == "image": image_utils.print_grayscale( np.squeeze(nii_file[..., img_idx]), folder_path, image_name) elif nii_type == "prediction": x = np.squeeze(nii_file[..., img_idx]) x[x == np.max(x)] = 0 image_utils.print_coloured(x, folder_path, image_name) else: image_utils.print_coloured( np.squeeze(nii_file[..., img_idx]), folder_path, image_name)
def main(fs_exp_config, slices, test): # Load data data = load_and_maybe_process_data( input_folder=sys_config.data_root, preprocessing_folder=sys_config.preproc_folder, mode=fs_exp_config.data_mode, size=fs_exp_config.image_size, target_resolution=fs_exp_config.target_resolution, force_overwrite=False ) # Get images batch_size = len(slices) if test: slices = slices[slices < len(data['images_test'])] images = data['images_test'][slices, ...] prefix = 'test' else: slices = slices[slices < len(data['images_train'])] images = data['images_train'][slices, ...] prefix = 'train' image_tensor_shape = [batch_size] + list(fs_exp_config.image_size) + [1] images_pl = tf.placeholder(tf.float32, shape=image_tensor_shape, name='images') feed_dict = { images_pl: np.expand_dims(images, -1), } #Get full supervision prediction mask_pl, softmax_pl = model.predict(images_pl, fs_exp_config.model_handle, fs_exp_config.nlabels) saver = tf.train.Saver() init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) checkpoint_path = utils.get_latest_model_checkpoint_path(fs_model_path, 'model_best_dice.ckpt') saver.restore(sess, checkpoint_path) fs_predictions, _ = sess.run([mask_pl, softmax_pl], feed_dict=feed_dict) for i in range(batch_size): print_coloured(fs_predictions[i, ...], filepath=OUTPUT_FOLDER, filename='{}{}_fs_pred'.format(prefix, slices[i]))
def main(exp_config, batch_size=3): # Load data data = h5py.File(sys_config.project_root + exp_config.scribble_data, 'r') slices = np.random.randint(low=0, high=data['images_test'].shape[0], size=batch_size) slices = np.sort(np.unique(slices)) slices = [80, 275, 370] batch_size = len(slices) images = data['images_test'][slices, ...] masks = data['masks_test'][slices, ...] #masks[masks == 0] = 4 num_recursions = most_recent_recursion(model_path) image_tensor_shape = [batch_size] + list(exp_config.image_size) + [1] images_pl = tf.placeholder(tf.float32, shape=image_tensor_shape, name='images') mask_pl, softmax_pl = model.predict(images_pl, exp_config.model_handle, exp_config.nlabels) #mask_fs_pl, softmax_fs_pl = model.predict(images_pl, unet2D_bn_modified, 4) saver = tf.train.Saver() init = tf.global_variables_initializer() predictions = np.zeros([batch_size] + list(exp_config.image_size) + [num_recursions + 1]) feed_dict = { images_pl: np.expand_dims(images, -1), } path = '/scratch_net/' with tf.Session() as sess: sess.run(init) pred_size = 0 for recursion in range(num_recursions + 1): try: try: checkpoint_path = utils.get_latest_model_checkpoint_path( model_path, 'recursion_{}_model_best_dice.ckpt'.format(recursion)) except: checkpoint_path = utils.get_latest_model_checkpoint_path( model_path, 'recursion_{}_model.ckpt'.format(recursion)) saver.restore(sess, checkpoint_path) mask_out, _ = sess.run([mask_pl, softmax_pl], feed_dict=feed_dict) for mask in range(batch_size): predictions[ mask, ..., pred_size] = image_utils.keep_largest_connected_components( np.squeeze(mask_out[mask, ...])) print("Classified for recursion {}".format(recursion)) pred_size += 1 except Exception as e: print(e) num_recursions = pred_size fig = plt.figure() num_cols = num_recursions + 3 #RW: path = base_path + "/poster/" for recursion in range(num_recursions): predictions[..., recursion] = segment(images, np.squeeze(predictions[..., recursion]), beta=exp_config.rw_beta, threshold=0) for r in range(batch_size): #Add the image # ax = fig.add_subplot(batch_size, num_cols, 1 + r*num_cols) # ax.axis('off') # ax.imshow(np.squeeze(images[r, ...]), cmap='gray') image_utils.print_grayscale( np.squeeze(images[r, ...]), path, '{}_{}_image'.format(exp_config.experiment_name, slices[r])) #Add the mask # ax = fig.add_subplot(batch_size, num_cols, 2 + r*num_cols) # ax.axis('off') # ax.imshow(np.squeeze(masks[r, ...]), vmin=0, vmax=4, cmap='jet') image_utils.print_coloured( np.squeeze(masks[r, ...]), path, '{}_{}_gt'.format(exp_config.experiment_name, slices[r])) #predictions[r, ...] = segment(images, np.squeeze(predictions[r, ...]), beta=exp_config.rw_beta, threshold=0) for recursion in range(num_recursions): #Add each prediction image_utils.print_coloured( np.squeeze(predictions[r, ..., recursion]), path, '{}_{}_pred_r{}'.format(exp_config.experiment_name, slices[r], recursion)) #ax = fig.add_subplot(batch_size, num_cols, 3 + recursion + r*num_cols) #ax.axis('off') #ax.imshow(np.squeeze(predictions[r, ..., recursion]), vmin=0, vmax=4, cmap='jet') while True: plt.axis('off') plt.show()
def main(ws_exp_config, slices, test): # Load data exp_dir = sys_config.project_root + 'acdc_logdir/' + ws_exp_config.experiment_name + '/' base_data = h5py.File(os.path.join(exp_dir, 'base_data.hdf5'), 'r') # Get number of recursions num_recursions = acdc_data.most_recent_recursion( sys_config.project_root + 'acdc_logdir/' + ws_exp_config.experiment_name) print(num_recursions) num_recursions += 1 # Get images batch_size = len(slices) if test: slices = slices[slices < len(base_data['images_test'])] images = base_data['images_test'][slices, ...] gt = base_data['masks_test'][slices, ...] prefix = 'test' else: slices = slices[slices < len(base_data['images_train'])] images = base_data['images_train'][slices, ...] gt = base_data['masks_train'][slices, ...] scr = base_data['scribbles_train'][slices, ...] prefix = 'train' image_tensor_shape = [batch_size] + list(ws_exp_config.image_size) + [1] images_pl = tf.placeholder(tf.float32, shape=image_tensor_shape, name='images') feed_dict = { images_pl: np.expand_dims(images, -1), } #Get weak supervision predictions mask_pl, softmax_pl = model.predict(images_pl, ws_exp_config.model_handle, ws_exp_config.nlabels) saver = tf.train.Saver() init = tf.global_variables_initializer() predictions = np.zeros([batch_size] + list(ws_exp_config.image_size) + [num_recursions]) predictions_klc = np.zeros_like(predictions) predictions_rw = np.zeros_like(predictions) with tf.Session() as sess: sess.run(init) for recursion in range(num_recursions): try: try: checkpoint_path = utils.get_latest_model_checkpoint_path( ws_model_path, 'recursion_{}_model_best_xent.ckpt'.format(recursion)) except: try: checkpoint_path = utils.get_latest_model_checkpoint_path( ws_model_path, 'recursion_{}_model_best_dice.ckpt'.format( recursion)) except: checkpoint_path = utils.get_latest_model_checkpoint_path( ws_model_path, 'recursion_{}_model.ckpt'.format(recursion)) saver.restore(sess, checkpoint_path) mask_out, _ = sess.run([mask_pl, softmax_pl], feed_dict=feed_dict) predictions[..., recursion] = mask_out for i in range(batch_size): predictions_klc[ i, :, :, recursion] = image_utils.keep_largest_connected_components( mask_out[i, ...]) predictions_rw[..., recursion] = segment( images, np.squeeze(predictions_klc[..., recursion]), beta=ws_exp_config.rw_beta, threshold=0) print("Classified for recursion {}".format(recursion)) except Exception: predictions[..., recursion] = -1 * np.zeros_like( predictions[..., recursion]) print("Could not find checkpoint for recursion {} - skipping". format(recursion)) for i in range(batch_size): pref = '{}{}'.format(prefix, slices[i]) print_grayscale(images[i, ...], filepath=OUTPUT_FOLDER, filename='{}_image'.format(pref)) print_coloured(gt[i, ...], filepath=OUTPUT_FOLDER, filename='{}_gt'.format(pref)) for recursion in range(num_recursions): if np.max(predictions[i, :, :, recursion]) >= -0.5: print_coloured(predictions[i, :, :, recursion], filepath=OUTPUT_FOLDER, filename="{}_ws_pred_r{}".format( pref, recursion)) print_coloured(predictions_klc[i, :, :, recursion], filepath=OUTPUT_FOLDER, filename="{}_ws_pred_klc_r{}".format( pref, recursion)) print_coloured(predictions_rw[i, :, :, recursion], filepath=OUTPUT_FOLDER, filename="{}_ws_pred_klc_rw_r{}".format( pref, recursion)) print("Dice coefficient for slice {} is {}".format( slices[i], dice(predictions_rw[i, :, :, recursion], gt[i, ...]))) if not test: print_coloured(scr[i, ...], filepath=OUTPUT_FOLDER, filename='{}_scribble'.format(pref))