def train_load():
    path = 'data/train'
    
    Dir = listdir(path)
    imagelist = []
    ListOfName = []
    count = 0
    for directory in Dir:
        if directory != '.DS_Store': #For some reason this directory keep bumping up
            subpath = listdir(path + '/' + directory)
            ListOfName.append(directory)
            print(directory)
            count = count + 1
            for subdir in subpath:
                if subdir != '.DS_Store':
                    Image = image(path + '/' + directory + '/' + subdir, count)
                    Image = Image.get_feature(reshape = True)
                    #Image = Image.getGaborFeatures(reshape = True)
                    output = count - 1
            #        output = numpy.zeros((121,1))
             #       output[count -1] = numpy.float64(1)
                    imagelist.append([Image, output])
                    
    #we need to randomly shuffle the data to retain the generality 
    shuffle(imagelist)
    with open('pickle/ListOfName.pkl','w') as f:
                pickle.dump(ListOfName,f)      
    print('got image list for train')
    return imagelist, count
def test_load():
    path = 'data/test'
    
    Dir = listdir(path)
    imagelist = []
    ListOfName = []
    for directory in Dir:
        if directory != '.DS_Store': #For some reason this directory keep bumping up
            ListOfName.append(directory)
            Image = image(path + '/' + directory, 1000) #assign a random class to test data
            Image = Image.get_feature(reshape = True)
            imagelist.append([Image, 1000])

    with open('pickle/TestImageName.pkl','w') as f:
        pickle.dump(ListOfName,f)  
    print('got image list for test')
                    
    #shuffle(imagelist)

    return imagelist