def init_data(mode): global CLASS_NUM, BATCH_SIZE, inet, cifar_data, data_set, dp, config_name, raw_cifar assert mode in ["train", "eval"] CLASS_NUM = settings.config["CLASS_NUM"] BATCH_SIZE = settings.config["BATCH_SIZE"] data_set = settings.config["data_set"] config_name = settings.config["config_name"] assert data_set in ["cifar10", "svhn", "imagenet"] data_set = data_set if data_set == "imagenet": if mode == "train": inet = imagenet(BATCH_SIZE, dataset="train") elif mode == "eval": inet = imagenet(BATCH_SIZE, dataset="val") elif data_set == "cifar10": raw_cifar = cifar10_input.CIFAR10Data("cifar10_data") if mode == "eval": cifar_data = raw_cifar.eval_data elif mode == "train": cifar_data = raw_cifar.train_data else: assert False, "Not implemented" dp = datapair(CLASS_NUM, BATCH_SIZE)
#LR_DECAY_RATE = 1e-5 # 5e-5 DECAY_STEPS = 1.0 adv_weight = 128 ITER = 100 style_weight = 1 if data_set == "cifar10": raw_cifar = cifar10_input.CIFAR10Data("cifar10_data") def get_data(sess): x_batch, y_batch = raw_cifar.train_data.get_next_batch( batch_size=BATCH_SIZE, multiple_passes=True) return x_batch, y_batch elif data_set == "imagenet": inet = imagenet(BATCH_SIZE, dataset="train") def get_data(sess): x_batch, y_batch = inet.get_next_batch(sess) return x_batch, y_batch ENCODER_WEIGHTS_PATH = 'vgg19_normalised.npz' if data_set == "cifar10": Decoder_Model = "./trans_pretrained/cifar10transform1.ckpt-574000" #'transform2.ckpt-147000'#./trans_pretrained/transform.ckpt' elif data_set == "imagenet": if data_set_name == "imagenet_shallow": Decoder_Model = "./imagenetshallowtransform1.ckpt.mode2" elif data_set_name == "imagenet_shallowest": Decoder_Model = "./imagenetshallowesttransform1.ckpt.mode2"
LEARNING_RATE = 1e-3 LR_DECAY_RATE = 1e-5 # 5e-5 DECAY_STEPS = 1.0 adv_weight = 12 #128 ITER = 1000 style_weight = 1 if data_set == "cifar10": raw_cifar = cifar10_input.CIFAR10Data("cifar10_data") def get_data(sess): x_batch, y_batch = raw_cifar.train_data.get_next_batch( batch_size=BATCH_SIZE, multiple_passes=True) return x_batch, y_batch elif data_set == "imagenet": inet = imagenet(BATCH_SIZE, "train") def get_data(sess): x_batch, y_batch = inet.get_next_batch(sess) return x_batch, y_batch ENCODER_WEIGHTS_PATH = 'vgg19_normalised.npz' if data_set == "cifar10": # 'transform2.ckpt-147000'#./trans_pretrained/transform.ckpt' Decoder_Model = "./trans_pretrained/cifar10transform1.ckpt-574000" elif data_set == "imagenet": # "./trans_pretrained/imagenetshallowtransform1.ckpt-104000" Decoder_Model = "./imagenetshallowtransform1.ckpt.mode2"
DECAY_STEPS = 1.0 adv_weight = 128 ITER = 500 CLIP_NORM_VALUE = 10.0 style_weight = 1 if data_set == "cifar10": raw_cifar = cifar10_input.CIFAR10Data("cifar10_data") def get_data(sess): x_batch, y_batch = raw_cifar.eval_data.get_next_batch( batch_size=BATCH_SIZE, multiple_passes=True) return x_batch, y_batch elif data_set == "imagenet": inet = imagenet(BATCH_SIZE, "val") def get_data(sess): x_batch, y_batch = inet.get_next_batch(sess) return x_batch, y_batch ENCODER_WEIGHTS_PATH = 'vgg19_normalised.npz' if data_set == "cifar10": Decoder_Model = "./trans_pretrained/cifar10transform1.ckpt-574000" #'transform2.ckpt-147000'#./trans_pretrained/transform.ckpt' elif data_set == "imagenet": if decoder_name == "imagenet_shallowest": Decoder_Model = "./imagenetshallowesttransform1.ckpt.mode2" elif decoder_name == "imagenet_shallow": Decoder_Model = "./imagenetshallowtransform1.ckpt.mode2" #"./trans_pretrained/imagenetshallowtransform1.ckpt-104000"