def test_with_cov(self): simdict = Simulations() meadict = Measurements() covdict = Covariances() # mock measurements dtuple = DomainTuple.make((RGSpace(1), RGSpace(12))) arr_a = np.random.rand(1, 12) comm.Bcast(arr_a, root=0) mea = Observable(dtuple, arr_a) meadict.append(('test', 'nan', '12', 'nan'), mea, True) # mock sims dtuple = DomainTuple.make((RGSpace(5*mpisize), RGSpace(12))) arr_b = np.random.rand(5, 12) sim = Observable(dtuple, arr_b) simdict.append(('test', 'nan', '12', 'nan'), sim, True) # mock covariance arr_c = np.random.rand(12, 12) comm.Bcast(arr_c, root=0) dtuple = DomainTuple.make((RGSpace(shape=arr_c.shape))) cov = Field.from_global_data(dtuple, arr_c) covdict.append(('test', 'nan', '12', 'nan'), cov, True) # with covariance lh = SimpleLikelihood(meadict, covdict) # calc by likelihood rslt = lh(simdict) # feed variable value, not parameter value # calc by hand arr_b = sim.to_global_data() # get global arr_b diff = (np.mean(arr_b, axis=0) - arr_a) (sign, logdet) = np.linalg.slogdet(arr_c*2.*np.pi) baseline = -float(0.5)*float(np.vdot(diff, np.linalg.solve(arr_c, diff.T))+sign*logdet) self.assertAlmostEqual(rslt, baseline)
def test_without_simcov(self): simdict = Simulations() meadict = Measurements() covdict = Covariances() # mock measurements dtuple = DomainTuple.make((RGSpace(1), HPSpace(nside=2))) arr_a = np.random.rand(1, 48) comm.Bcast(arr_a, root=0) mea = Observable(dtuple, arr_a) meadict.append(('test', 'nan', '2', 'nan'), mea) # mock covariance dtuple = DomainTuple.make((RGSpace(shape=(48, 48)))) arr_c = np.random.rand(48, 48) comm.Bcast(arr_c, root=0) cov = Field.from_global_data(dtuple, arr_c) covdict.append(('test', 'nan', '2', 'nan'), cov) # mock observable with repeated single realisation dtuple = DomainTuple.make((RGSpace(5*mpisize), HPSpace(nside=2))) arr_b = np.random.rand(1, 48) comm.Bcast(arr_b, root=0) arr_ens = np.zeros((5, 48)) for i in range(len(arr_ens)): arr_ens[i] = arr_b sim = Observable(dtuple, arr_ens) simdict.append(('test', 'nan', '2', 'nan'), sim) # simplelikelihood lh_simple = SimpleLikelihood(meadict, covdict) rslt_simple = lh_simple(simdict) # ensemblelikelihood lh_ensemble = EnsembleLikelihood(meadict, covdict) rslt_ensemble = lh_ensemble(simdict) self.assertEqual(rslt_ensemble, rslt_simple)
def test_with_cov(self): simdict = Simulations() meadict = Measurements() covdict = Covariances() # mock measurements arr_a = np.random.rand(1, 4 * mpisize) comm.Bcast(arr_a, root=0) mea = Observable(arr_a, 'measured') meadict.append(('test', 'nan', str(4 * mpisize), 'nan'), mea, True) # mock sims arr_b = np.random.rand(5, 4 * mpisize) sim = Observable(arr_b, 'simulated') simdict.append(('test', 'nan', str(4 * mpisize), 'nan'), sim, True) # mock covariance arr_c = np.random.rand(4, 4 * mpisize) cov = Observable(arr_c, 'covariance') covdict.append(('test', 'nan', str(4 * mpisize), 'nan'), cov, True) # with covariance lh = SimpleLikelihood(meadict, covdict) # calc by likelihood rslt = lh(simdict) # feed variable value, not parameter value # calc by hand full_b = np.vstack(comm.allgather(arr_b)) # global arr_b diff = (np.mean(full_b, axis=0) - arr_a) full_cov = np.vstack(comm.allgather(arr_c)) # global covariance (sign, logdet) = np.linalg.slogdet(full_cov * 2. * np.pi) baseline = -float(0.5) * float( np.vdot(diff, np.linalg.solve(full_cov, diff.T)) + sign * logdet) self.assertAlmostEqual(rslt, baseline)
def test_without_simcov(self): simdict = Simulations() meadict = Measurements() covdict = Covariances() # mock measurements arr_a = np.random.rand(1, 4 * mpisize) comm.Bcast(arr_a, root=0) mea = Observable(arr_a, 'measured') meadict.append(('test', 'nan', str(4 * mpisize), 'nan'), mea, True) # mock covariance arr_c = np.random.rand(4, 4 * mpisize) cov = Observable(arr_c, 'covariance') covdict.append(('test', 'nan', str(4 * mpisize), 'nan'), cov, True) # mock observable with repeated single realisation arr_b = np.random.rand(1, 4 * mpisize) comm.Bcast(arr_b, root=0) arr_ens = np.zeros((2, 4 * mpisize)) for i in range(len(arr_ens)): arr_ens[i] = arr_b sim = Observable(arr_ens, 'simulated') simdict.append(('test', 'nan', str(4 * mpisize), 'nan'), sim, True) # simplelikelihood lh_simple = SimpleLikelihood(meadict, covdict) rslt_simple = lh_simple(simdict) # ensemblelikelihood lh_ensemble = EnsembleLikelihood(meadict, covdict) rslt_ensemble = lh_ensemble(simdict) self.assertEqual(rslt_ensemble, rslt_simple)
def test_covdict_apply_mask(self): msk = np.random.randint(0, 2, 2 * mpisize).reshape(1, -1) mskdict = Masks() comm.Bcast(msk, root=0) mskdict.append(('test', 'nan', str(2 * mpisize), 'nan'), msk, True) cov = np.random.rand(2, 2 * mpisize) covdict = Covariances() covdict.append(('test', 'nan', str(2 * mpisize), 'nan'), cov, True) covdict.apply_mask(mskdict) pix_num = msk.sum() self.assertTrue(('test', 'nan', str(pix_num), 'nan') in covdict.keys())
def test_covdict_apply_mask(self): msk = np.array([0, 1, 0, 1, 1]).reshape(1, 5) mskdict = Masks() mskdict.append(('test', 'nan', '5', 'nan'), msk, True) cov_field = Field.from_global_data(RGSpace(shape=(5, 5)), np.random.rand(5, 5)) arr = cov_field.local_data covdict = Covariances() covdict.append(('test', 'nan', '5', 'nan'), arr, True) covdict.apply_mask(mskdict) arr = np.delete(cov_field.to_global_data(), [0, 2], 0) arr = np.delete(arr, [0, 2], 1) for i in range(arr.shape[0]): self.assertListEqual( list((covdict[('test', 'nan', '3', 'nan')].to_global_data())[i]), list(arr[i]))
def test_covdict_append_observable(self): cov = Observable(np.random.rand(2, 2 * mpisize), 'covariance') covdict = Covariances() covdict.append(('test', 'nan', str(2 * mpisize), 'nan'), cov, True) # plain covariance for i in range(len(cov.data)): self.assertListEqual( list((covdict[('test', 'nan', str(2 * mpisize), 'nan')].data)[i]), list((cov.data)[i])) cov = Observable(np.random.rand(12 * mpisize, 12 * mpisize * mpisize), 'covariance') covdict.append(('test', 'nan', str(mpisize), 'nan'), cov) # healpix covariance for i in range(len(cov.data)): self.assertListEqual( list((covdict[('test', 'nan', str(mpisize), 'nan')].data)[i]), list((cov.data)[i]))
def test_covdict_append_field(self): cov_field = Field.from_global_data(RGSpace(shape=(3, 3)), np.random.rand(3, 3)) covdict = Covariances() covdict.append(('test', 'nan', '3', 'nan'), cov_field, True) # plain covariance for i in range(len(cov_field.local_data)): self.assertListEqual( list((covdict[('test', 'nan', '3', 'nan')].local_data)[i]), list((cov_field.local_data)[i])) cov_field = Field.from_global_data(RGSpace(shape=(48, 48)), np.random.rand(48, 48)) covdict.append(('test', 'nan', '2', 'nan'), cov_field) # healpix covariance for i in range(len(cov_field.local_data)): self.assertListEqual( list((covdict[('test', 'nan', '2', 'nan')].local_data)[i]), list((cov_field.local_data)[i]))
def test_covdict_append_array(self): cov = (Field.from_global_data(RGSpace(shape=(5, 5)), np.random.rand(5, 5))).local_data covdict = Covariances() covdict.append(('test', 'nan', '5', 'nan'), cov, True) # plain covariance self.assertEqual(covdict[('test', 'nan', '5', 'nan')].shape, (5, 5)) for i in range(len(cov)): self.assertListEqual( list((covdict[('test', 'nan', '5', 'nan')].local_data)[i]), list(cov[i])) cov = np.random.rand(48, 48) comm.Bcast(cov, root=0) covdict.append(('test', 'nan', '2', 'nan'), cov) # healpix covariance self.assertEqual(covdict[('test', 'nan', '2', 'nan')].shape, (48, 48)) for i in range(len(cov)): self.assertListEqual( list((covdict[('test', 'nan', '2', 'nan')].to_global_data())[i]), list(cov[i]))
def test_covdict_append_array(self): cov = np.random.rand(2, 2 * mpisize) covdict = Covariances() covdict.append(('test', 'nan', str(2 * mpisize), 'nan'), cov, True) # plain covariance self.assertEqual( covdict[('test', 'nan', str(2 * mpisize), 'nan')].shape, (2 * mpisize, 2 * mpisize)) for i in range(len(cov)): self.assertListEqual( list((covdict[('test', 'nan', str(2 * mpisize), 'nan')].data)[i]), list(cov[i])) cov = np.random.rand(12 * mpisize, 12 * mpisize * mpisize) covdict.append(('test', 'nan', str(mpisize), 'nan'), cov) # healpix covariance self.assertEqual(covdict[('test', 'nan', str(mpisize), 'nan')].shape, (12 * mpisize * mpisize, 12 * mpisize * mpisize)) for i in range(len(cov)): self.assertListEqual( list((covdict[('test', 'nan', str(mpisize), 'nan')].data)[i]), list(cov[i]))
def testfield(): """ :return: log.basicConfig(filename='imagine.log', level=log.INFO) """ """ # step 0, set 'a' and 'b', 'mea_std' TestField in LiSimulator is modeled as field = gaussian_random(mean=a,std=b)_x * cos(x) where x in (0,2pi) for generating mock data we need true values of a and b: true_a, true_b, mea_seed measurement uncertainty: mea_std measurement points, positioned in (0,2pi) evenly, due to TestField modelling """ true_a = 3. true_b = 6. mea_std = 0.1 # std of gaussian measurement error mea_seed = 233 mea_points = 10 # data points in measurements truths = [true_a, true_b] # will be used in visualizing posterior """ # step 1, prepare mock data """ """ # 1.1, generate measurements mea_field = signal_field + noise_field """ x = np.linspace(0, 2. * np.pi, mea_points) np.random.seed(mea_seed) # seed for signal field signal_field = np.multiply( np.cos(x), np.random.normal(loc=true_a, scale=true_b, size=mea_points)) mea_field = np.vstack([ signal_field + np.random.normal(loc=0., scale=mea_std, size=mea_points) ]) """ # 1.2, generate covariances """ # pre-defined according to measurement error mea_cov = (mea_std**2) * np.eye(mea_points) """ # 1.3 assemble in imagine convention """ mock_data = Measurements() # create empty Measrurements object mock_cov = Covariances() # create empty Covariance object # pick up a measurement mock_data.append(('test', 'nan', str(mea_points), 'nan'), mea_field, True) mock_cov.append(('test', 'nan', str(mea_points), 'nan'), mea_cov, True) """ # 1.4, visualize mock data """ #if mpirank == 0: #matplotlib.pyplot.plot(x, mock_data[('test', 'nan', str(mea_points), 'nan')].to_global_data()[0]) #matplotlib.pyplot.savefig('testfield_mock.pdf') """ # step 2, prepare pipeline and execute analysis """ """ # 2.1, ensemble likelihood """ likelihood = EnsembleLikelihood( mock_data, mock_cov) # initialize likelihood with measured info """ # 2.2, field factory list """ factory = TestFieldFactory( active_parameters=('a', 'b')) # factory with single active parameter factory.parameter_ranges = { 'a': (0, 10), 'b': (0, 10) } # adjust parameter range for Bayesian analysis factory_list = [factory] # likelihood requires a list/tuple of factories """ # 2.3, flat prior """ prior = FlatPrior() """ # 2.4, simulator """ simer = LiSimulator(mock_data) """ # 2.5, pipeline """ ensemble_size = 10 pipe = MultinestPipeline(simer, factory_list, likelihood, prior, ensemble_size) pipe.random_type = 'free' pipe.sampling_controllers = { 'n_iter_before_update': 1, 'n_live_points': 400, 'verbose': True, 'resume': False } results = pipe() # run with pymultinest """ # step 3, visualize (with corner package) """ if mpirank == 0: samples = results['samples'] for i in range(len( pipe.active_parameters)): # convert variables into parameters low, high = pipe.active_ranges[pipe.active_parameters[i]] for j in range(samples.shape[0]): samples[j, i] = unity_mapper(samples[j, i], low, high) # corner plot corner.corner(samples[:, :len(pipe.active_parameters)], range=[0.99] * len(pipe.active_parameters), quantiles=[0.02, 0.5, 0.98], labels=pipe.active_parameters, show_titles=True, title_kwargs={"fontsize": 15}, color='steelblue', truths=truths, truth_color='firebrick', plot_contours=True, hist_kwargs={'linewidth': 2}, label_kwargs={'fontsize': 15}) matplotlib.pyplot.savefig('testfield_posterior.pdf')
def testfield(measure_size, simulation_size, make_plots=True, debug=False): if debug: log.basicConfig(filename='imagine_li_dynesty.log', level=log.DEBUG) else: log.basicConfig(filename='imagine_li_dynesty.log') """ :return: log.basicConfig(filename='imagine.log', level=log.INFO) """ """ # step 0, set 'a' and 'b', 'mea_std' TestField in LiSimulator is modeled as field = gaussian_random(mean=a,std=b)_x * cos(x) where x in (0,2pi) for generating mock data we need true values of a and b: true_a, true_b, mea_seed measurement uncertainty: mea_std measurement points, positioned in (0,2pi) evenly, due to TestField modelling """ true_a = 3. true_b = 6. mea_std = 0.1 # std of gaussian measurement error mea_seed = 233 truths = [true_a, true_b] # will be used in visualizing posterior """ # step 1, prepare mock data """ """ # 1.1, generate measurements mea_field = signal_field + noise_field """ x = np.linspace(0, 2. * np.pi, measure_size) # data points in measurements np.random.seed(mea_seed) # seed for signal field signal_field = np.multiply( np.cos(x), np.random.normal(loc=true_a, scale=true_b, size=measure_size)) mea_field = np.vstack([ signal_field + np.random.normal(loc=0., scale=mea_std, size=measure_size) ]) """ # 1.2, generate covariances what's the difference between pre-define dan re-estimated? """ # re-estimate according to measurement error mea_repeat = np.zeros((simulation_size, measure_size)) for i in range(simulation_size): # times of repeated measurements mea_repeat[i, :] = signal_field + np.random.normal( loc=0., scale=mea_std, size=measure_size) mea_cov = oas_mcov(mea_repeat)[1] print(mpirank, 're-estimated: \n', mea_cov, 'slogdet', mpi_slogdet(mea_cov)) # pre-defined according to measurement error mea_cov = (mea_std**2) * mpi_eye(measure_size) print(mpirank, 'pre-defined: \n', mea_cov, 'slogdet', mpi_slogdet(mea_cov)) """ # 1.3 assemble in imagine convention """ mock_data = Measurements() # create empty Measrurements object mock_cov = Covariances() # create empty Covariance object # pick up a measurement mock_data.append(('test', 'nan', str(measure_size), 'nan'), mea_field, True) mock_cov.append(('test', 'nan', str(measure_size), 'nan'), mea_cov, True) """ # 1.4, visualize mock data """ if mpirank == 0 and make_plots: plt.plot(x, mock_data[('test', 'nan', str(measure_size), 'nan')].data[0]) plt.savefig('testfield_mock_li.pdf') """ # step 2, prepare pipeline and execute analysis """ """ # 2.1, ensemble likelihood """ likelihood = EnsembleLikelihood( mock_data, mock_cov) # initialize likelihood with measured info """ # 2.2, field factory list """ factory = TestFieldFactory( active_parameters=('a', 'b')) # factory with single active parameter factory.parameter_ranges = { 'a': (0, 10), 'b': (0, 10) } # adjust parameter range for Bayesian analysis factory_list = [factory] # likelihood requires a list/tuple of factories """ # 2.3, flat prior """ prior = FlatPrior() """ # 2.4, simulator """ simer = LiSimulator(mock_data) """ # 2.5, pipeline """ pipe = DynestyPipeline(simer, factory_list, likelihood, prior, simulation_size) pipe.random_type = 'controllable' # 'fixed' random_type doesnt work for Dynesty pipeline, yet pipe.seed_tracer = int(23) pipe.sampling_controllers = {'nlive': 400} tmr = Timer() tmr.tick('test') results = pipe() tmr.tock('test') if mpirank == 0: print('\n elapse time ' + str(tmr.record['test']) + '\n') """ # step 3, visualize (with corner package) """ if mpirank == 0 and make_plots: samples = results['samples'] for i in range(len( pipe.active_parameters)): # convert variables into parameters low, high = pipe.active_ranges[pipe.active_parameters[i]] for j in range(samples.shape[0]): samples[j, i] = unity_mapper(samples[j, i], low, high) # corner plot corner.corner(samples[:, :len(pipe.active_parameters)], range=[0.99] * len(pipe.active_parameters), quantiles=[0.02, 0.5, 0.98], labels=pipe.active_parameters, show_titles=True, title_kwargs={"fontsize": 15}, color='steelblue', truths=truths, truth_color='firebrick', plot_contours=True, hist_kwargs={'linewidth': 2}, label_kwargs={'fontsize': 20}) plt.savefig('testfield_posterior_li_dynesty.pdf')
def mock_errprop(_nside, _freq): """ return masked mock synchrotron Q, U error propagated from theoretical uncertainties """ # hammurabi parameter base file xmlpath = './params_masked_random.xml' # active parameters true_b0 = 3.0 true_psi0 = 27.0 true_psi1 = 0.9 true_chi0 = 25. true_alpha = 3.0 true_r0 = 5.0 true_z0 = 1.0 true_rms = 6.0 true_rho = 0.8 true_a0 = 1.7 # _npix = 12 * _nside**2 # x = np.zeros((1, _npix)) # only for triggering simulator trigger = Measurements() trigger.append(('sync', str(_freq), str(_nside), 'Q'), x) # Q map trigger.append(('sync', str(_freq), str(_nside), 'U'), x) # U map # initialize simulator mocksize = 20 # ensemble of mock data error = 0.1 # theoretical raltive uncertainty for each (active) parameter mocker = Hammurabi(measurements=trigger, xml_path=xmlpath) # prepare theoretical uncertainty b0_var = np.random.normal(true_b0, error * true_b0, mocksize) psi0_var = np.random.normal(true_psi0, error * true_psi0, mocksize) psi1_var = np.random.normal(true_psi1, error * true_psi1, mocksize) chi0_var = np.random.normal(true_chi0, error * true_chi0, mocksize) alpha_var = np.random.normal(true_alpha, error * true_alpha, mocksize) r0_var = np.random.normal(true_r0, error * true_r0, mocksize) z0_var = np.random.normal(true_z0, error * true_z0, mocksize) rms_var = np.random.normal(true_rms, error * ture_rms, mocksize) rho_var = np.random.normal(true_rho, error * true_rho, mocksize) a0_var = np.random.normal(true_a0, error * true_a0, mocksize) mock_raw_q = np.zeros((mocksize, _npix)) mock_raw_u = np.zeros((mocksize, _npix)) # start simulation for i in range(mocksize): # get one realization each time # BregWMAP field paramlist = { 'b0': b0_var[i], 'psi0': psi0_var[i], 'psi1': psi1_var[i], 'chi0': chi0_var[i] } breg_wmap = BregWMAP(paramlist, 1) # CREAna field paramlist = { 'alpha': alpha_var[i], 'beta': 0.0, 'theta': 0.0, 'r0': r0_var[i], 'z0': z0_var[i], 'E0': 20.6, 'j0': 0.0217 } cre_ana = CREAna(paramlist, 1) # FEregYMW16 field paramlist = dict() fereg_ymw16 = FEregYMW16(paramlist, 1) # BrndES field paramlist = { 'rms': rms_var[i], 'k0': 0.1, 'a0': a0_var[i], 'rho': rho_var[i], 'r0': 8.0, 'z0': 1.0 } brnd_es = BrndES(paramlist, 1) # collect mock data and covariance outputs = mocker([breg_wmap, cre_ana, fereg_ymw16, brnd_es]) mock_raw_q[i, :] = outputs[('sync', str(_freq), str(_nside), 'Q')].local_data mock_raw_u[i, :] = outputs[('sync', str(_freq), str(_nside), 'U')].local_data # collect mean and cov from simulated results sim_data = Simulations() mock_data = Measurements() mock_cov = Covariances() sim_data.append(('sync', str(_freq), str(_nside), 'Q'), mock_raw_q) sim_data.append(('sync', str(_freq), str(_nside), 'U'), mock_raw_u) mock_mask = mask_map(_nside, _freq) sim_data.apply_mask(mock_mask) for key in sim_data.keys(): mock_data.append( key, np.vstack([(sim_data[key].to_global_data())[np.random.randint( 0, mocksize)]]), True) mock_cov.append(key, oas_cov(sim_data[key].to_global_data()), True) return mock_data, mock_cov
def mock_errfix(_nside, _freq): """ return masked mock synchrotron Q, U error fixed """ # hammurabi parameter base file xmlpath = './params_masked_random.xml' # active parameters true_b0 = 3.0 true_psi0 = 27.0 true_psi1 = 0.9 true_chi0 = 25. true_alpha = 3.0 true_r0 = 5.0 true_z0 = 1.0 true_rms = 6.0 true_rho = 0.8 true_a0 = 1.7 # _npix = 12 * _nside**2 # x = np.zeros((1, _npix)) # only for triggering simulator trigger = Measurements() trigger.append(('sync', str(_freq), str(_nside), 'Q'), x) # Q map trigger.append(('sync', str(_freq), str(_nside), 'U'), x) # U map # initialize simulator error = 0.1 mocker = Hammurabi(measurements=trigger, xml_path=xmlpath) # start simulation # BregWMAP field paramlist = { 'b0': true_b0, 'psi0': true_psi0, 'psi1': true_psi1, 'chi0': true_chi0 } breg_wmap = BregWMAP(paramlist, 1) # CREAna field paramlist = { 'alpha': true_alpha, 'beta': 0.0, 'theta': 0.0, 'r0': true_r0, 'z0': true_z0, 'E0': 20.6, 'j0': 0.0217 } cre_ana = CREAna(paramlist, 1) # FEregYMW16 field paramlist = dict() fereg_ymw16 = FEregYMW16(paramlist, 1) # BrndES field paramlist = { 'rms': true_rms, 'k0': 0.1, 'a0': true_a0, 'rho': true_rho, 'r0': 8.0, 'z0': 1.0 } brnd_es = BrndES(paramlist, 1) # collect mock data and covariance outputs = mocker([breg_wmap, cre_ana, fereg_ymw16, brnd_es]) mock_raw_q = outputs[('sync', str(_freq), str(_nside), 'Q')].local_data mock_raw_u = outputs[('sync', str(_freq), str(_nside), 'U')].local_data # collect mean and cov from simulated results mock_data = Measurements() mock_cov = Covariances() mock_data.append(('sync', str(_freq), str(_nside), 'Q'), mock_raw_q) mock_data.append(('sync', str(_freq), str(_nside), 'U'), mock_raw_u) mock_mask = mask_map(_nside, _freq) mock_data.apply_mask(mock_mask) for key in mock_data.keys(): mock_cov.append(key, (error**2 * (np.std(mock_raw_q))**2) * np.eye(int(key[2])), True) return mock_data, mock_cov
def wmap_errprop(): #log.basicConfig(filename='imagine.log', level=log.DEBUG) """ only WMAP regular magnetic field model in test, @ 23GHz Faraday rotation provided by YMW16 free electron model full WMAP parameter set {b0, psi0, psi1, chi0} """ # hammurabi parameter base file xmlpath = './params_fullsky_regular.xml' # we take three active parameters true_b0 = 6.0 true_psi0 = 27.0 true_psi1 = 0.9 true_chi0 = 25. true_alpha = 3.0 true_r0 = 5.0 true_z0 = 1.0 mea_nside = 2 # observable Nside mea_pix = 12 * mea_nside**2 # observable pixel number """ # step 1, prepare mock data """ x = np.zeros((1, mea_pix)) # only for triggering simulator trigger = Measurements() trigger.append(('sync', '23', str(mea_nside), 'I'), x) # only I map # initialize simulator mocksize = 10 # ensemble of mock data (per node) error = 0.1 # theoretical raltive uncertainty for each (active) parameter mocker = Hammurabi(measurements=trigger, xml_path=xmlpath) # prepare theoretical uncertainty b0_var = np.random.normal(true_b0, error * true_b0, mocksize) psi0_var = np.random.normal(true_psi0, error * true_psi0, mocksize) psi1_var = np.random.normal(true_psi1, error * true_psi1, mocksize) chi0_var = np.random.normal(true_chi0, error * true_chi0, mocksize) alpha_var = np.random.normal(true_alpha, error * true_alpha, mocksize) r0_var = np.random.normal(true_r0, error * true_r0, mocksize) z0_var = np.random.normal(true_z0, error * true_z0, mocksize) mock_ensemble = Simulations() # start simulation for i in range(mocksize): # get one realization each time # BregWMAP field paramlist = { 'b0': b0_var[i], 'psi0': psi0_var[i], 'psi1': psi1_var[i], 'chi0': chi0_var[i] } # inactive parameters at default breg_wmap = BregWMAP(paramlist, 1) # CREAna field paramlist = { 'alpha': alpha_var[i], 'beta': 0.0, 'theta': 0.0, 'r0': r0_var[i], 'z0': z0_var[i], 'E0': 20.6, 'j0': 0.0217 } # inactive parameters at default cre_ana = CREAna(paramlist, 1) # FEregYMW16 field fereg_ymw16 = FEregYMW16(dict(), 1) # collect mock data and covariance outputs = mocker([breg_wmap, cre_ana, fereg_ymw16]) mock_ensemble.append(('sync', '23', str(mea_nside), 'I'), outputs[('sync', '23', str(mea_nside), 'I')]) # collect mean and cov from simulated results mock_data = Measurements() mock_cov = Covariances() mean, cov = oas_mcov(mock_ensemble[('sync', '23', str(mea_nside), 'I')]) mock_data.append(('sync', '23', str(mea_nside), 'I'), mean) mock_cov.append(('sync', '23', str(mea_nside), 'I'), cov) """ # step 2, prepare pipeline and execute analysis """ #likelihood = EnsembleLikelihood(mock_data, mock_cov) likelihood = SimpleLikelihood(mock_data, mock_cov) breg_factory = BregWMAPFactory(active_parameters=('b0', 'psi0', 'psi1', 'chi0')) breg_factory.parameter_ranges = { 'b0': (0., 10.), 'psi0': (0., 50.), 'psi1': (0., 2.), 'chi0': (0., 50.) } cre_factory = CREAnaFactory(active_parameters=('alpha', 'r0', 'z0')) cre_factory.parameter_ranges = { 'alpha': (1., 5.), 'r0': (1., 10.), 'z0': (0.1, 5.) } fereg_factory = FEregYMW16Factory() factory_list = [breg_factory, cre_factory, fereg_factory] prior = FlatPrior() simer = Hammurabi(measurements=mock_data, xml_path=xmlpath) ensemble_size = 1 pipe = MultinestPipeline(simer, factory_list, likelihood, prior, ensemble_size) pipe.random_type = 'free' pipe.sampling_controllers = { 'n_live_points': 4000, 'resume': False, 'verbose': True } results = pipe() """ # step 3, visualize (with corner package) """ if mpirank == 0: samples = results['samples'] np.savetxt('posterior_fullsky_regular_errprop.txt', samples) """