def chapter_augmenters_coarsesaltandpepper(): fn_start = "arithmetic/coarsesaltandpepper" aug = iaa.CoarseSaltAndPepper(0.05, size_percent=(0.01, 0.1)) run_and_save_augseq(fn_start + ".jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2, quality=95) aug = iaa.CoarseSaltAndPepper(0.05, size_px=(4, 16)) run_and_save_augseq(fn_start + "_pixels.jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2, quality=95) aug = iaa.CoarseSaltAndPepper(0.05, size_percent=(0.01, 0.1), per_channel=True) run_and_save_augseq(fn_start + "_per_channel.jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2, quality=95)
def augmentation_pipeline(level): if level == 'resize_only': list_augmentations = [iaa.Resize(512)] elif level == 'light': list_augmentations = [ iaa.Resize(512), iaa.Affine( scale=1.1, shear=(2.5, 2.5), rotate=(-5, 5), ), ] elif level == 'heavy': #no rotation included list_augmentations = [ iaa.Resize(512), iaa.Affine( scale=1.15, shear=(4.0, 4.0), ), iaa.Fliplr(0.2), # horizontally flip 20% of the images iaa.Sometimes( 0.1, iaa.CoarseSaltAndPepper(p=(0.01, 0.01), size_percent=(0.1, 0.2))), iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0.0, 2.0))), iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(scale=(0, 0.04 * 255))), ] elif level == 'heavy_with_rotations': list_augmentations = [ iaa.Resize(512), iaa.Affine( scale=1.15, shear=(4.0, 4.0), rotate=(-6, 6), ), iaa.Fliplr(0.2), # horizontally flip 20% of the images iaa.Sometimes( 0.1, iaa.CoarseSaltAndPepper(p=(0.01, 0.01), size_percent=(0.1, 0.2))), iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0.0, 2.0))), iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(scale=(0, 0.04 * 255))), ] return list_augmentations
def train(self, sess, data, labels, learning_rate): ### do hiding? if len(self.do_hide) > 0: # do_hide is num of grid N = np.random.choice(self.do_hide, 1)[0] ### if N == 0: use full image if N != 0: n, w, h, _ = data.shape mask = net.gen_random_patch(shape=(n, w, h), N=N) mask = np.expand_dims(mask, axis=3) data = data * mask + (1 - mask) * self.image_mean ### do augmentation? if self.do_augmentation == 1: data = iaa.Sequential([ iaa.Fliplr(0.25), iaa.Flipud(0.25), iaa.Sometimes(0.25, iaa.Affine(rotate=(-180, 180))), iaa.Sometimes( 0.2, iaa.Affine(translate_percent={ 'x': (-0.15, 0.15), 'y': (-0.15, 0.15) })) ]).augment_images(data) elif self.do_augmentation == 2: data = iaa.Sequential([ iaa.Fliplr(0.25), iaa.Flipud(0.25), iaa.Sometimes(0.25, iaa.Affine(rotate=(-180, 180))), iaa.Sometimes( 0.2, iaa.Affine(translate_percent={ 'x': (-0.1, 0.1), 'y': (-0.1, 0.1) })), iaa.Sometimes( 0.2, iaa.OneOf([ iaa.CoarseDropout(0.2, size_percent=(0.05, 0.1)), iaa.CoarseSalt(0.2, size_percent=(0.05, 0.1)), iaa.CoarsePepper(0.2, size_percent=(0.05, 0.1)), iaa.CoarseSaltAndPepper(0.2, size_percent=(0.05, 0.1)) ])) ]).augment_images(data) _, loss, scores, hits, summary = sess.run( [ self.train_op, self.loss_op, self.score_op, self.hit_op, self.summary_op ], feed_dict={ self.inputs: data, self.labels: labels, self.learning_rate: learning_rate, self.is_training: True }) return loss, scores, hits, summary
def get_augmentation_sequence(): sometimes = lambda aug: iaa.Sometimes(0.5, aug) seq = iaa.Sequential([ sometimes(iaa.Fliplr(0.5)), iaa.Sometimes(0.1, iaa.Add((-70, 70))), sometimes( iaa.Affine(scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) } # scale images to 80-120% of their size, individually per axis )), sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.01))), iaa.Sometimes( 0.1, iaa.SimplexNoiseAlpha(iaa.OneOf( [iaa.Add((150, 255)), iaa.Add((-100, 100))]), sigmoid_thresh=5)), iaa.Sometimes( 0.1, iaa.OneOf([ iaa.CoarseDropout((0.01, 0.15), size_percent=(0.02, 0.08)), iaa.CoarseSaltAndPepper(p=0.2, size_percent=0.01), iaa.CoarseSalt(p=0.2, size_percent=0.02) ])), iaa.Sometimes(0.25, slice_thickness_augmenter) ]) return seq
def train_transform(image, segmentation_maps=None): image_aug = iaa.Sequential( [iaa.CoarseSaltAndPepper(0.05, size_percent=(0.01, 0.1))], random_order=False) geom_aug = iaa.Sequential([ iaa.flip.Fliplr(p=0.5), iaa.flip.Flipud(p=0.5), iaa.Affine(scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) }, translate_percent={ "x": (-0.25, 0.25), "y": (-0.25, 0.25) }, rotate=(-180, 180), shear=(20, 20), mode='reflect'), ], random_order=False) geom_aug_deterministic = geom_aug.to_deterministic() image = geom_aug_deterministic.augment(image=image) image = image_aug(image=image) if segmentation_maps is None: return image segmentation_maps = geom_aug_deterministic.augment(image=segmentation_maps) return image, segmentation_maps
def aug_image(image, is_infer=False, augment = 1): if is_infer: flip_code = augment if flip_code == 1: seq = iaa.Sequential([iaa.Fliplr(1.0)]) elif flip_code == 2: seq = iaa.Sequential([iaa.Flipud(1.0)]) elif flip_code == 3: seq = iaa.Sequential([iaa.Flipud(1.0), iaa.Fliplr(1.0)]) elif flip_code ==0: return image else: seq = iaa.Sequential([ iaa.Affine(rotate= (-15, 15), shear = (-15, 15), mode='edge'), iaa.SomeOf((0, 2), [ iaa.GaussianBlur((0, 1.5)), iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.01 * 255), per_channel=0.5), iaa.AddToHueAndSaturation((-5, 5)), iaa.EdgeDetect(alpha=(0, 0.5)), iaa.CoarseSaltAndPepper(0.2, size_percent=(0.05, 0.1)), ], random_order=True ) ]) image = seq.augment_image(image) return image
def logic(self, image): for param in self.augmentation_params: self.augmentation_data.append([ str(param.augmentation_value), iaa.CoarseSaltAndPepper( p=0.2, size_percent=param.augmentation_value, min_size=2).to_deterministic().augment_image(image), param.detection_tag ])
def heavy_augmentation(): augmenter = iaa.Sequential( [ iaa.Sometimes( 0.1, iaa.OneOf([ iaa.CoarseSaltAndPepper(0.02, size_percent=(0.001, 0.02)), iaa.CoarseSaltAndPepper( 0.02, size_percent=(0.001, 0.02), per_channel=True) ])), iaa.Sometimes(0.5, iaa.GaussianBlur( sigma=(0, 3.0))), # blur images with a sigma of 0 to 3.0 iaa.OneOf([ iaa.Sometimes(0.33, iaa.SaltAndPepper(p=(0, 0.05))), iaa.Sometimes(0.33, iaa.SaltAndPepper(p=(0, 0.05), per_channel=True)) ]), iaa.Sometimes( 0.6, iaa.OneOf([ iaa.Multiply((0.6, 1.4), per_channel=0.5), iaa.Multiply((0.8, 1.2), per_channel=0.5), ])), iaa.Sometimes(0.6, iaa.LinearContrast((0.6, 1.4))), # Too slow to do all the time iaa.Sometimes( 0.2, iaa.CropAndPad( percent=(-0.2, 0.2), pad_mode="constant", pad_cval=0)), iaa.Sometimes(0.1, iaa.imgcorruptlike.ShotNoise(severity=1)), iaa.Sometimes( 0.2, iaa.OneOf([ iaa.imgcorruptlike.Pixelate(severity=1), iaa.imgcorruptlike.GlassBlur(severity=1), iaa.imgcorruptlike.ZoomBlur(severity=1), iaa.imgcorruptlike.Fog(severity=1), iaa.imgcorruptlike.Frost(severity=1), iaa.imgcorruptlike.Spatter(severity=1) ])), ], random_order=True) return augmenter
def __getitem__(self, idx): patient_id = self.patient_ids[idx] if self.verbose: print(patient_id) img = self.load_image(patient_id) img_source_h, img_source_w = img.shape[:2] img_h, img_w = img.shape[:2] if self.is_training: cfg = utils.TransformCfg( crop_size=self.img_size, src_center_x=img_w / 2 + np.random.uniform(-32, 32), src_center_y=img_h / 2 + np.random.uniform(-32, 32), scale_x=self.img_size / img_source_w * (2**np.random.normal(0, 0.25)), scale_y=self.img_size / img_source_h * (2**np.random.normal(0, 0.25)), angle=np.random.normal(0, 8.0), shear=np.random.normal(0, 4.0), hflip=np.random.choice([True, False]), vflip=False) else: cfg = utils.TransformCfg(crop_size=self.img_size, src_center_x=img_w / 2, src_center_y=img_h / 2, scale_x=self.img_size / img_source_w, scale_y=self.img_size / img_source_h, angle=0, shear=0, hflip=False, vflip=False) crop = cfg.transform_image(img) if self.is_training: crop = np.power(crop, 2.0**np.random.normal(0, 0.2)) aug = iaa.Sequential([ iaa.Sometimes( 0.1, iaa.CoarseSaltAndPepper(p=(0.01, 0.01), size_percent=(0.1, 0.2))), iaa.Sometimes(0.2, iaa.GaussianBlur(sigma=(0.0, 2.0))), iaa.Sometimes(0.2, iaa.AdditiveGaussianNoise(scale=(0, 0.04 * 255))) ]) crop = aug.augment_image( np.clip(np.stack([crop, crop, crop], axis=2) * 255, 0, 255).astype(np.uint8))[:, :, 0].astype( np.float32) / 255.0 # soft_label = 1e-4 # labels = self.patient_categories[patient_id] * (1.0 - soft_label * 2) + soft_label labels = self.patient_categories[patient_id].astype(np.float32) sample = {'img': crop, 'categories': labels} return sample
def data_aug2(image): seq = iaa.Sometimes( 0.5, iaa.Identity(), iaa.OneOf([ iaa.CoarseDropout((0.1, 0.2), size_percent=(0.01, 0.02)), iaa.CoarseSaltAndPepper(0.1, size_percent=(0.01, 0.02)) ])) image = seq(image=image) return image
def setup_augmentation(self): # Augmentation # aug = iaa.Sequential([ # #iaa.Sometimes(0.5, iaa.PerspectiveTransform(0.05)), # #iaa.Sometimes(0.5, iaa.CropAndPad(percent=(-0.05, 0.1))), # #iaa.Sometimes(0.5, iaa.Affine(scale=(1.0, 1.2))), # iaa.Sometimes(0.5, iaa.CoarseDropout( p=0.05, size_percent=0.01) ),F # iaa.Sometimes(0.5, iaa.GaussianBlur(1.2*np.random.rand())), # iaa.Sometimes(0.5, iaa.Add((-0.1, 0.1), per_channel=0.3)), # iaa.Sometimes(0.3, iaa.Invert(0.2, per_channel=True)), # iaa.Sometimes(0.5, iaa.Multiply((0.6, 1.4), per_channel=0.5)), # iaa.Sometimes(0.5, iaa.Multiply((0.6, 1.4))), # iaa.Sometimes(0.5, iaa.ContrastNormalization((0.5, 2.2), per_channel=0.3))], # random_order=False) # aug = iaa.Sequential([ # #iaa.Sometimes(0.5, iaa.CoarseDropout( p=0.25, size_percent=0.02) ), # iaa.Sometimes(0.5, iaa.GaussianBlur(1.2*np.random.rand())), # iaa.Sometimes(0.5, iaa.Add((-60, 60), per_channel=0.3)), # iaa.Sometimes(0.5, iaa.Multiply((0.6, 1.4), per_channel=0.5)), # iaa.Sometimes(0.5, iaa.Multiply((0.6, 1.4))), # iaa.Sometimes(0.5, iaa.ContrastNormalization((0.5, 2.2), per_channel=0.3))], # random_order=False) aug = iaa.Sequential( [ #iaa.Sometimes(0.5, PerspectiveTransform(0.05)), #iaa.Sometimes(0.5, CropAndPad(percent=(-0.05, 0.1))), iaa.Sometimes(0.5, iaa.Affine(scale=(1.0, 1.2))), #iaa.Sometimes(0.5, iaa.CoarseDropout( p=0.2, size_percent=0.05) ), iaa.Sometimes( 0.5, iaa.SomeOf(2, [ iaa.CoarseDropout(p=0.2, size_percent=0.05), iaa.Cutout(fill_mode="constant", cval=(0, 255), fill_per_channel=0.5), iaa.Cutout(fill_mode="constant", cval=(255)), iaa.CoarseSaltAndPepper(0.05, size_px=(4, 16)), iaa.CoarseSalt(0.05, size_percent=(0.01, 0.1)) ])), iaa.Sometimes(0.5, iaa.GaussianBlur(1.2 * np.random.rand())), iaa.Sometimes(0.5, iaa.Add((-25, 25), per_channel=0.3)), iaa.Sometimes(0.3, iaa.Invert(0.2, per_channel=True)), iaa.Sometimes(0.5, iaa.Multiply((0.6, 1.4), per_channel=0.5)), iaa.Sometimes(0.5, iaa.Multiply((0.6, 1.4))), iaa.Sometimes( 0.5, iaa.ContrastNormalization( (0.5, 2.2), per_channel=0.3)) ], random_order=False) return aug
def DA_CoarseSaltAndPepper(inputimg): assert inputimg.ndim in [2, 3], "input invalid! Please check input" values = np.arange(0.0, 0.21, 0.02) p_channels = np.arange(0.0, 1.01, 0.1) ret = [] for i in np.arange(len(values)): for j in np.arange(len(p_channels)): Name = "DA_CoarseSalt" + str(values[i]) + "_" + str(p_channels[j]) VALUE = str(values[i]) + "_" + str(p_channels[j]) aug_img = iaa.CoarseSalt(p=values[i],size_percent=(0.5, 1.0), per_channel=p_channels[j]).augment_image(inputimg) ret.append((Name, VALUE, aug_img)) Name = "DA_CoarseSaltAndPepper" + str(values[i]) + "_" + str(p_channels[j]) VALUE = str(values[i]) + "_" + str(p_channels[j]) aug_img1 = iaa.CoarseSaltAndPepper(p=values[i], size_percent=(0.5, 1.0), per_channel=p_channels[j]).augment_image(inputimg) ret.append((Name, VALUE, aug_img1)) assert len(ret) == 242, "DA_CoarseDropout output size not match!" return ret
def __init__(self, size, train): self.seq = iaa.Sequential([ iaa.OneOf( [iaa.CropToFixedSize(size, size), iaa.Resize((size, size))], random_state=63), # end of OneOf iaa.Fliplr(0.5), iaa.PerspectiveTransform(0.01) ]) if train: self.seq.append(iaa.CoarseSaltAndPepper(0.2, size_percent=0.01)) #self.seq = self.seq.to_deterministic() self.mean = np.array([123.15163084, 115.90288257, 103.0626238], dtype=np.float32).reshape(3, 1, 1)
def cpu_augment(self, imgs, boxes): # for bx in boxes: # self.assert_bboxes(bx) ia_bb = [] for n in range(len(imgs)): c_boxes = [] for i in boxes[n]: try: c_boxes.append( ia.BoundingBox(x1=i[0], y1=i[1], x2=i[2], y2=i[3])) except AssertionError: print('Assertion Error: ', i) ia_bb.append(ia.BoundingBoxesOnImage(c_boxes, shape=imgs[n].shape)) seq = iaa.Sequential([ iaa.Sometimes(0.5, iaa.AddElementwise((-20, 20), per_channel=1)), iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(scale=(0, 0.10 * 255))), iaa.Sometimes(0.5, iaa.Multiply((0.75, 1.25), per_channel=1)), iaa.Sometimes(0.5, iaa.MultiplyElementwise((0.75, 1.25))), iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0.0, 1.0))), iaa.Fliplr(0.5), iaa.Sometimes( 0.95, iaa.SomeOf(1, [ iaa.CoarseDropout(p=(0.10, 0.25), size_percent=(0.25, 0.5)), iaa.CoarseDropout(p=(0.0, 0.15), size_percent=(0.1, 0.25)), iaa.Dropout(p=(0, 0.25)), iaa.CoarseSaltAndPepper(p=(0, 0.25), size_percent=(0.1, 0.2)) ])), iaa.Affine(scale=iap.Choice( [iap.Uniform(0.4, 1), iap.Uniform(1, 3)]), rotate=(-180, 180)) ]) seq_det = seq.to_deterministic() image_b_aug = seq_det.augment_images(imgs) bbs_b_aug = seq_det.augment_bounding_boxes(ia_bb) bbs_b_aug = [ b.remove_out_of_image().cut_out_of_image() for b in bbs_b_aug ] return image_b_aug, [ np.array([self.bbox_r(j) for j in i.bounding_boxes]) for i in bbs_b_aug ]
def __init__(self, args, split, input_size=224, scale=0.05, shift=0.05, flip=0.5, rand_warp=False, skip_warp=0.1, warp_scale=0.05, rotate=20): self.args = args self.split = split self.input_size = input_size self.scale = scale self.shift = shift self.flip = flip self.rand_warp = rand_warp self.skip_warp = skip_warp self.warp_scale = warp_scale self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 1, 3) self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 1, 3) self.data_rng = np.random.RandomState(123) self.eig_val = np.array([0.2141788, 0.01817699, 0.00341571], dtype=np.float32) self.eig_vec = np.array([[-0.58752847, -0.69563484, 0.41340352], [-0.5832747, 0.00994535, -0.81221408], [-0.56089297, 0.71832671, 0.41158938]], dtype=np.float32) self.samples = [] self.seq = iaa.Sequential([ iaa.Sometimes(0.5, [ iaa.Fliplr(flip), iaa.Affine(scale={"x": (1.0 - shift, 1.0 + shift), "y": (1.0 - shift, 1.0 + shift)}, translate_percent={"x": (-scale, scale), "y": (-scale, scale)}, rotate=(-rotate, rotate)), iaa.GaussianBlur(sigma=(0, 1.0)), iaa.Sometimes(0.5, iaa.CoarseDropout(0.2, size_percent=0.1)), iaa.Sometimes(0.5, iaa.PiecewiseAffine(scale=(0.01, warp_scale), nb_cols=3, nb_rows=3)), iaa.Sometimes(0.5, iaa.OneOf([ iaa.SaltAndPepper(0.1), iaa.CoarseSaltAndPepper(0.05, size_percent=(0.01, 0.1)), ]))]), ]) self.split = ['train', 'val'] if self.split == 'all' else [self.split] for spl in self.split: data_path = os.path.join(args.data, spl) for path, dir, files in os.walk(data_path): for filename in files: ext = os.path.splitext(filename)[-1].lower() if ext in ('.png', '.jpg', '.jpeg'): label_name = path.split('/')[-1] self.samples.append((os.path.join(path, filename), int(label_name))) print('Loaded {} total: {}'.format(self.split[0], len(self.samples)))
def get_augmentation_sequence(): sometimes = lambda aug: iaa.Sometimes(0.5, aug) slice_thickness_augmenter = iaa.Lambda( func_images=slice_thickness_func_images, func_keypoints=slice_thickness_func_keypoints) seq = iaa.Sequential([ sometimes(iaa.Fliplr(0.5)), iaa.Sometimes(0.1, iaa.Add((-70, 70))), sometimes( iaa.Affine(scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) } # scale images to 80-120% of their size, individually per axis )), # sometimes(iaa.Multiply((0.5, 1.5))), # sometimes(iaa.ContrastNormalization((0.5, 2.0))), # sometimes(iaa.Affine( # translate_percent={"x": (-0.02, 0.02), "y": (-0.02, 0.02)}, # translate by -20 to +20 percent (per axis) # rotate=(-2, 2), # rotate by -45 to +45 degrees # shear=(-2, 2), # shear by -16 to +16 degrees # order=[0, 1], # use nearest neighbour or bilinear interpolation (fast) # cval=(0, 255), # if mode is constant, use a cval between 0 and 255 # mode='constant' # use any of scikit-image's warping modes (see 2nd image from the top for examples) # )), # sometimes(iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05))), sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.01))), iaa.Sometimes( 0.1, iaa.SimplexNoiseAlpha(iaa.OneOf( [iaa.Add((150, 255)), iaa.Add((-100, 100))]), sigmoid_thresh=5)), iaa.Sometimes( 0.1, iaa.OneOf([ iaa.CoarseDropout((0.01, 0.15), size_percent=(0.02, 0.08)), iaa.CoarseSaltAndPepper(p=0.2, size_percent=0.01), iaa.CoarseSalt(p=0.2, size_percent=0.02) ])), iaa.Sometimes(0.25, slice_thickness_augmenter) ]) return seq
def get_augmentation_sequence(): sometimes = lambda aug: iaa.Sometimes(0.1, aug) seq = iaa.Sequential([ iaa.Sometimes( 0.01, iaa.OneOf([ iaa.CoarseDropout((0.01, 0.15), size_percent=(0.02, 0.08)), iaa.CoarseSaltAndPepper(p=0.2, size_percent=0.01), iaa.CoarseSalt(p=0.2, size_percent=0.02) ])), iaa.Sometimes(0.2, iaa.LinearContrast((0.25, 0.8))), iaa.Sometimes(0.2, iaa.Add((-20, 20))), ]) seq2 = iaa.Sequential([ sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.01), cval=0)), iaa.Sometimes( 0.2, iaa.ElasticTransformation(alpha=(15, 25), sigma=6, cval=0)) ]) return seq, seq2
def noise_tsfm(self, conf): seq = iaa.Sequential([ iaa.OneOf(children=[ iaa.GaussianBlur((0., 1.2)), iaa.AdditiveGaussianNoise(scale=(0, 0.1 * 255)), iaa.Emboss(alpha=(0, 0.5), strength=(0, 1.0)), iaa.ElasticTransformation(0.8), iaa.OneOf([ iaa.CoarseSaltAndPepper(p=(0., 0.15), size_percent=0.3), iaa.Dropout(p=0.15) ]) ]) ]) transform = trans.Compose([ trans.Lambda(lambda x: imgaug_on_PIL(seq, x)), trans.RandomApply([trans.ColorJitter(0.1, 0.15, 0.15)]), trans.RandomApply([trans.ColorJitter(hue=0.1)]), trans.ToTensor(), trans.Normalize(conf.mean, conf.std) ]) return transform
def augment_images(np_img_array, img_dir, img_list): seq = iaa.Sequential( [ iaa.Sometimes( 0.8, iaa.CropAndPad( percent=(0.1, 0.3), pad_mode=["edge", "reflect"], )), iaa.Sometimes( 0.35, iaa.WithColorspace(to_colorspace="HSV", from_colorspace="RGB", children=iaa.WithChannels( 0, iaa.Add((10, 50))))), iaa.Sometimes( 0.35, iaa.ContrastNormalization((0.5, 1.5), per_channel=0.5)), iaa.Sometimes(0.35, iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.25))), iaa.Sometimes( 0.35, iaa.OneOf([ iaa.CoarseDropout((0.15, 0.2), size_percent=(0.001, 0.02), per_channel=0.1), iaa.CoarseSaltAndPepper( (0.15, 0.2), size_percent=(0.001, 0.02)), #iaa.Superpixels(p_replace=(0.15, 0.2), n_segments=(128, 256)) ])) ], random_order=True) images_aug = seq.augment_images(np_img_array) for image, filepath in zip(images_aug, image_list): global image_num image_num += 1 im = Image.fromarray(image) new_filename = split(filepath)[-1] new_filename.replace(image_extension, '') new_filename = new_filename + str(image_num) + image_extension im.save(join(image_dir, new_filename))
def grayback_gaia(): sequence = iaa.Sequential([ iaa.Fliplr(0.5), iaa.Flipud(0.5), iaa.Sometimes( 0.9, iaa.Affine(scale=[1, 2.5], translate_percent={ "x": (-0.2, 0.2), "y": (-0.2, 0.2) }, rotate=(-10, 10), order=1, cval=(0, 0), mode="constant")), iaa.Sometimes(0.5, iaa.ContrastNormalization((0.5, 1.5))), iaa.Sometimes( 0.5, iaa.OneOf([iaa.Add( (-50, 50)), iaa.Multiply((0.5, 1.5))])), iaa.Sometimes( 0.2, iaa.OneOf([ iaa.GaussianBlur(sigma=(0.0, 4.0)), iaa.Sharpen(alpha=(0.0, 1.0), lightness=(0.75, 2.0)) ])), iaa.Sometimes(0.1, iaa.AdditiveGaussianNoise(scale=(0, 0.1 * 255))), iaa.Sometimes( 0.1, iaa.OneOf([ iaa.Dropout(p=(0, 0.2)), iaa.CoarseDropout((0.0, 0.025), size_percent=(0.08)), iaa.SaltAndPepper(p=(0, 0.2)), iaa.CoarseSaltAndPepper((0.0, 0.025), size_percent=(0.08)) ])) ], random_order=False) return sequence
def simple_imgaug_example(): image_dir_path = dataset_home_dir_path + '/phenotyping/cvppp2017_lsc_lcc_challenge/package/CVPPP2017_LSC_training/training/A1' label_dir_path = dataset_home_dir_path + '/phenotyping/cvppp2017_lsc_lcc_challenge/package/CVPPP2017_LSC_training/training/A1' images, labels = prepare_dataset(image_dir_path, label_dir_path) image_width, image_height = 200, 200 # FIXME [decide] >> Before or after random transformation? # Preprocessing (normalization, standardization, etc). images_pp = images.astype(np.float) #images_pp /= 255.0 images_pp = standardize_samplewise(images_pp) #images_pp = standardize_featurewise(images_pp) if True: augmenter = iaa.SomeOf( (1, 2), [ iaa.OneOf([ iaa.Affine( scale={ 'x': (0.8, 1.2), 'y': (0.8, 1.2) }, # Scale images to 80-120% of their size, individually per axis. translate_percent={ 'x': (-0.1, 0.1), 'y': (-0.1, 0.1) }, # Translate by -10 to +10 percent (per axis). rotate=(-10, 10), # Rotate by -10 to +10 degrees. shear=(-5, 5), # Shear by -5 to +5 degrees. #order=[0, 1], # Use nearest neighbour or bilinear interpolation (fast). order= 0, # Use nearest neighbour or bilinear interpolation (fast). #cval=(0, 255), # If mode is constant, use a cval between 0 and 255. #mode=ia.ALL # Use any of scikit-image's warping modes (see 2nd image from the top for examples). #mode='edge' # Use any of scikit-image's warping modes (see 2nd image from the top for examples). ), #iaa.PiecewiseAffine(scale=(0.01, 0.05)), # Move parts of the image around. Slow. iaa.PerspectiveTransform(scale=(0.01, 0.1)), iaa.ElasticTransformation( alpha=(20.0, 50.0), sigma=(6.5, 8.5) ), # Move pixels locally around (with random strengths). ]), iaa.OneOf([ iaa.GaussianBlur(sigma=( 0, 3.0)), # Blur images with a sigma between 0 and 3.0. iaa.AverageBlur( k=(2, 7) ), # Blur image using local means with kernel sizes between 2 and 7. iaa.MedianBlur( k=(3, 11) ), # Blur image using local medians with kernel sizes between 2 and 7. iaa.MotionBlur(k=(5, 11), angle=(0, 360), direction=(-1.0, 1.0), order=1), ]), iaa.OneOf([ iaa.AdditiveGaussianNoise( loc=0, scale=(0.1 * 255, 0.5 * 255), per_channel=False), # Add Gaussian noise to images. iaa.AdditiveLaplaceNoise(loc=0, scale=(0.1 * 255, 0.4 * 255), per_channel=False), iaa.AdditivePoissonNoise(lam=(32, 96), per_channel=False), iaa.CoarseSaltAndPepper(p=(0.1, 0.3), size_percent=(0.2, 0.9), per_channel=False), iaa.CoarseSalt(p=(0.1, 0.3), size_percent=(0.2, 0.9), per_channel=False), iaa.CoarsePepper(p=(0.1, 0.3), size_percent=(0.2, 0.9), per_channel=False), iaa.CoarseDropout(p=(0.1, 0.3), size_percent=(0.05, 0.3), per_channel=False), ]), iaa.OneOf([ iaa.MultiplyHueAndSaturation(mul=(-10, 10), per_channel=False), iaa.AddToHueAndSaturation(value=(-255, 255), per_channel=False), iaa.LinearContrast( alpha=(0.5, 1.5), per_channel=False), # Improve or worsen the contrast. iaa.Invert(p=1, per_channel=False), # Invert color channels. iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # Sharpen images. iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # Emboss images. ]), ], random_order=True) elif False: augmenter = iaa.Sequential( [ # Apply the following augmenters to most images. iaa.Fliplr(0.5), # Horizontally flip 50% of all images. iaa.Flipud(0.2), # Vertically flip 20% of all images. # Crop images by -5% to 10% of their height/width. iaa.Sometimes( 0.5, iaa.CropAndPad(percent=(-0.05, 0.1), pad_mode=ia.ALL, pad_cval=(0, 255))), iaa.Sometimes( 0.5, iaa.Affine( scale={ 'x': (0.8, 1.2), 'y': (0.8, 1.2) }, # Scale images to 80-120% of their size, individually per axis. translate_percent={ 'x': (-0.2, 0.2), 'y': (-0.2, 0.2) }, # Translate by -20 to +20 percent (per axis). rotate=(-45, 45), # Rotate by -45 to +45 degrees. shear=(-16, 16), # Shear by -16 to +16 degrees. order=[ 0, 1 ], # Use nearest neighbour or bilinear interpolation (fast). cval=( 0, 255 ), # If mode is constant, use a cval between 0 and 255. mode=ia. ALL # Use any of scikit-image's warping modes (see 2nd image from the top for examples). )), # Execute 0 to 5 of the following (less important) augmenters per image. # Don't execute all of them, as that would often be way too strong. iaa.SomeOf( (0, 5), [ iaa.Sometimes( 0.5, iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200)) ), # Convert images into their superpixel representation. iaa.OneOf([ iaa.GaussianBlur( (0, 3.0) ), # Blur images with a sigma between 0 and 3.0. iaa.AverageBlur( k=(2, 7) ), # Blur image using local means with kernel sizes between 2 and 7. iaa.MedianBlur( k=(3, 11) ), # Blur image using local medians with kernel sizes between 2 and 7. ]), iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # Sharpen images. iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # Emboss images. # Search either for all edges or for directed edges, blend the result with the original image using a blobby mask. iaa.SimplexNoiseAlpha( iaa.OneOf([ iaa.EdgeDetect(alpha=(0.5, 1.0)), iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)), ])), iaa.AdditiveGaussianNoise( loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5), # Add gaussian noise to images. iaa.OneOf([ iaa.Dropout( (0.01, 0.1), per_channel=0.5 ), # Randomly remove up to 10% of the pixels. iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2), ]), iaa.Invert(0.05, per_channel=True), # Invert color channels. iaa.Add( (-10, 10), per_channel=0.5 ), # Change brightness of images (by -10 to 10 of original value). iaa.AddToHueAndSaturation( (-20, 20)), # Change hue and saturation. # Either change the brightness of the whole image (sometimes per channel) or change the brightness of subareas. iaa.OneOf([ iaa.Multiply((0.5, 1.5), per_channel=0.5), iaa.FrequencyNoiseAlpha( exponent=(-4, 0), first=iaa.Multiply( (0.5, 1.5), per_channel=True), second=iaa.ContrastNormalization((0.5, 2.0))) ]), iaa.ContrastNormalization( (0.5, 2.0), per_channel=0.5 ), # Improve or worsen the contrast. iaa.Grayscale(alpha=(0.0, 1.0)), iaa.Sometimes( 0.5, iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25) ), # Move pixels locally around (with random strengths). iaa.Sometimes( 0.5, iaa.PiecewiseAffine(scale=(0.01, 0.05)) ), # Sometimes move parts of the image around. iaa.Sometimes( 0.5, iaa.PerspectiveTransform(scale=(0.01, 0.1))) ], random_order=True) ], random_order=True) else: augmenter = iaa.Sequential([ iaa.SomeOf( 1, [ #iaa.Sometimes(0.5, iaa.Crop(px=(0, 100))), # Crop images from each side by 0 to 16px (randomly chosen). iaa.Sometimes(0.5, iaa.Crop(percent=( 0, 0.1))), # Crop images by 0-10% of their height/width. iaa.Fliplr(0.5), # Horizontally flip 50% of the images. iaa.Flipud(0.5), # Vertically flip 50% of the images. iaa.Sometimes( 0.5, iaa.Affine( scale={ 'x': (0.8, 1.2), 'y': (0.8, 1.2) }, # Scale images to 80-120% of their size, individually per axis. translate_percent={ 'x': (-0.2, 0.2), 'y': (-0.2, 0.2) }, # Translate by -20 to +20 percent (per axis). rotate=(-45, 45), # Rotate by -45 to +45 degrees. shear=(-16, 16), # Shear by -16 to +16 degrees. #order=[0, 1], # Use nearest neighbour or bilinear interpolation (fast). order= 0, # Use nearest neighbour or bilinear interpolation (fast). #cval=(0, 255), # If mode is constant, use a cval between 0 and 255. #mode=ia.ALL # Use any of scikit-image's warping modes (see 2nd image from the top for examples). #mode='edge' # Use any of scikit-image's warping modes (see 2nd image from the top for examples). )), iaa.Sometimes(0.5, iaa.GaussianBlur( sigma=(0, 3.0))) # Blur images with a sigma of 0 to 3.0. ]), iaa.Scale(size={ 'height': image_height, 'width': image_width }) # Resize. ]) for idx in range(images.shape[0]): images_pp[idx] = (images_pp[idx] - np.min(images_pp[idx])) / ( np.max(images_pp[idx]) - np.min(images_pp[idx])) * 255 images_pp = images_pp.astype(np.uint8) # Test 1 (good). augmenter_det = augmenter.to_deterministic( ) # Call this for each batch again, NOT only once at the start. #images_aug1 = augmenter_det.augment_images(images) images_aug1 = augmenter_det.augment_images(images_pp) labels_aug1 = augmenter_det.augment_images(labels) augmenter_det = augmenter.to_deterministic( ) # Call this for each batch again, NOT only once at the start. #images_aug2 = augmenter_det.augment_images(images) images_aug2 = augmenter_det.augment_images(images_pp) labels_aug2 = augmenter_det.augment_images(labels) #export_images(images, labels, './augmented1/img', '') export_images(images_pp, labels, './augmented1/img', '') export_images(images_aug1, labels_aug1, './augmented1/img', '_aug1') export_images(images_aug2, labels_aug2, './augmented1/img', '_aug2') # Test 2 (bad). augmenter_det = augmenter.to_deterministic( ) # Call this for each batch again, NOT only once at the start. #images_aug1 = augmenter_det.augment_images(images) images_aug1 = augmenter_det.augment_images(images_pp) labels_aug1 = augmenter_det.augment_images(labels) #images_aug2 = augmenter_det.augment_images(images) images_aug2 = augmenter_det.augment_images(images_pp) labels_aug2 = augmenter_det.augment_images(labels) #export_images(images, labels, './augmented2/img', '') export_images(images_pp, labels, './augmented2/img', '') export_images(images_aug1, labels_aug1, './augmented2/img', '_aug1') export_images(images_aug2, labels_aug2, './augmented2/img', '_aug2') print('*********************************', images_pp.dtype)
def draw_per_augmenter_images(): print("[draw_per_augmenter_images] Loading image...") #image = misc.imresize(ndimage.imread("quokka.jpg")[0:643, 0:643], (128, 128)) image = ia.quokka_square(size=(128, 128)) keypoints = [ia.Keypoint(x=34, y=15), ia.Keypoint(x=85, y=13), ia.Keypoint(x=63, y=73)] # left ear, right ear, mouth keypoints = [ia.KeypointsOnImage(keypoints, shape=image.shape)] print("[draw_per_augmenter_images] Initializing...") rows_augmenters = [ (0, "Noop", [("", iaa.Noop()) for _ in sm.xrange(5)]), (0, "Crop\n(top, right,\nbottom, left)", [(str(vals), iaa.Crop(px=vals)) for vals in [(2, 0, 0, 0), (0, 8, 8, 0), (4, 0, 16, 4), (8, 0, 0, 32), (32, 64, 0, 0)]]), (0, "Pad\n(top, right,\nbottom, left)", [(str(vals), iaa.Pad(px=vals)) for vals in [(2, 0, 0, 0), (0, 8, 8, 0), (4, 0, 16, 4), (8, 0, 0, 32), (32, 64, 0, 0)]]), (0, "Fliplr", [(str(p), iaa.Fliplr(p)) for p in [0, 0, 1, 1, 1]]), (0, "Flipud", [(str(p), iaa.Flipud(p)) for p in [0, 0, 1, 1, 1]]), (0, "Superpixels\np_replace=1", [("n_segments=%d" % (n_segments,), iaa.Superpixels(p_replace=1.0, n_segments=n_segments)) for n_segments in [25, 50, 75, 100, 125]]), (0, "Superpixels\nn_segments=100", [("p_replace=%.2f" % (p_replace,), iaa.Superpixels(p_replace=p_replace, n_segments=100)) for p_replace in [0, 0.25, 0.5, 0.75, 1.0]]), (0, "Invert", [("p=%d" % (p,), iaa.Invert(p=p)) for p in [0, 0, 1, 1, 1]]), (0, "Invert\n(per_channel)", [("p=%.2f" % (p,), iaa.Invert(p=p, per_channel=True)) for p in [0.5, 0.5, 0.5, 0.5, 0.5]]), (0, "Add", [("value=%d" % (val,), iaa.Add(val)) for val in [-45, -25, 0, 25, 45]]), (0, "Add\n(per channel)", [("value=(%d, %d)" % (vals[0], vals[1],), iaa.Add(vals, per_channel=True)) for vals in [(-55, -35), (-35, -15), (-10, 10), (15, 35), (35, 55)]]), (0, "AddToHueAndSaturation", [("value=%d" % (val,), iaa.AddToHueAndSaturation(val)) for val in [-45, -25, 0, 25, 45]]), (0, "Multiply", [("value=%.2f" % (val,), iaa.Multiply(val)) for val in [0.25, 0.5, 1.0, 1.25, 1.5]]), (1, "Multiply\n(per channel)", [("value=(%.2f, %.2f)" % (vals[0], vals[1],), iaa.Multiply(vals, per_channel=True)) for vals in [(0.15, 0.35), (0.4, 0.6), (0.9, 1.1), (1.15, 1.35), (1.4, 1.6)]]), (0, "GaussianBlur", [("sigma=%.2f" % (sigma,), iaa.GaussianBlur(sigma=sigma)) for sigma in [0.25, 0.50, 1.0, 2.0, 4.0]]), (0, "AverageBlur", [("k=%d" % (k,), iaa.AverageBlur(k=k)) for k in [1, 3, 5, 7, 9]]), (0, "MedianBlur", [("k=%d" % (k,), iaa.MedianBlur(k=k)) for k in [1, 3, 5, 7, 9]]), (0, "BilateralBlur\nsigma_color=250,\nsigma_space=250", [("d=%d" % (d,), iaa.BilateralBlur(d=d, sigma_color=250, sigma_space=250)) for d in [1, 3, 5, 7, 9]]), (0, "Sharpen\n(alpha=1)", [("lightness=%.2f" % (lightness,), iaa.Sharpen(alpha=1, lightness=lightness)) for lightness in [0, 0.5, 1.0, 1.5, 2.0]]), (0, "Emboss\n(alpha=1)", [("strength=%.2f" % (strength,), iaa.Emboss(alpha=1, strength=strength)) for strength in [0, 0.5, 1.0, 1.5, 2.0]]), (0, "EdgeDetect", [("alpha=%.2f" % (alpha,), iaa.EdgeDetect(alpha=alpha)) for alpha in [0.0, 0.25, 0.5, 0.75, 1.0]]), (0, "DirectedEdgeDetect\n(alpha=1)", [("direction=%.2f" % (direction,), iaa.DirectedEdgeDetect(alpha=1, direction=direction)) for direction in [0.0, 1*(360/5)/360, 2*(360/5)/360, 3*(360/5)/360, 4*(360/5)/360]]), (0, "AdditiveGaussianNoise", [("scale=%.2f*255" % (scale,), iaa.AdditiveGaussianNoise(scale=scale * 255)) for scale in [0.025, 0.05, 0.1, 0.2, 0.3]]), (0, "AdditiveGaussianNoise\n(per channel)", [("scale=%.2f*255" % (scale,), iaa.AdditiveGaussianNoise(scale=scale * 255, per_channel=True)) for scale in [0.025, 0.05, 0.1, 0.2, 0.3]]), (0, "Dropout", [("p=%.2f" % (p,), iaa.Dropout(p=p)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]), (0, "Dropout\n(per channel)", [("p=%.2f" % (p,), iaa.Dropout(p=p, per_channel=True)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]), (3, "CoarseDropout\n(p=0.2)", [("size_percent=%.2f" % (size_percent,), iaa.CoarseDropout(p=0.2, size_percent=size_percent, min_size=2)) for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]), (0, "CoarseDropout\n(p=0.2, per channel)", [("size_percent=%.2f" % (size_percent,), iaa.CoarseDropout(p=0.2, size_percent=size_percent, per_channel=True, min_size=2)) for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]), (0, "SaltAndPepper", [("p=%.2f" % (p,), iaa.SaltAndPepper(p=p)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]), (0, "Salt", [("p=%.2f" % (p,), iaa.Salt(p=p)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]), (0, "Pepper", [("p=%.2f" % (p,), iaa.Pepper(p=p)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]), (0, "CoarseSaltAndPepper\n(p=0.2)", [("size_percent=%.2f" % (size_percent,), iaa.CoarseSaltAndPepper(p=0.2, size_percent=size_percent, min_size=2)) for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]), (0, "CoarseSalt\n(p=0.2)", [("size_percent=%.2f" % (size_percent,), iaa.CoarseSalt(p=0.2, size_percent=size_percent, min_size=2)) for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]), (0, "CoarsePepper\n(p=0.2)", [("size_percent=%.2f" % (size_percent,), iaa.CoarsePepper(p=0.2, size_percent=size_percent, min_size=2)) for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]), (0, "ContrastNormalization", [("alpha=%.1f" % (alpha,), iaa.ContrastNormalization(alpha=alpha)) for alpha in [0.5, 0.75, 1.0, 1.25, 1.50]]), (0, "ContrastNormalization\n(per channel)", [("alpha=(%.2f, %.2f)" % (alphas[0], alphas[1],), iaa.ContrastNormalization(alpha=alphas, per_channel=True)) for alphas in [(0.4, 0.6), (0.65, 0.85), (0.9, 1.1), (1.15, 1.35), (1.4, 1.6)]]), (0, "Grayscale", [("alpha=%.1f" % (alpha,), iaa.Grayscale(alpha=alpha)) for alpha in [0.0, 0.25, 0.5, 0.75, 1.0]]), (6, "PerspectiveTransform", [("scale=%.3f" % (scale,), iaa.PerspectiveTransform(scale=scale)) for scale in [0.025, 0.05, 0.075, 0.10, 0.125]]), (0, "PiecewiseAffine", [("scale=%.3f" % (scale,), iaa.PiecewiseAffine(scale=scale)) for scale in [0.015, 0.03, 0.045, 0.06, 0.075]]), (0, "Affine: Scale", [("%.1fx" % (scale,), iaa.Affine(scale=scale)) for scale in [0.1, 0.5, 1.0, 1.5, 1.9]]), (0, "Affine: Translate", [("x=%d y=%d" % (x, y), iaa.Affine(translate_px={"x": x, "y": y})) for x, y in [(-32, -16), (-16, -32), (-16, -8), (16, 8), (16, 32)]]), (0, "Affine: Rotate", [("%d deg" % (rotate,), iaa.Affine(rotate=rotate)) for rotate in [-90, -45, 0, 45, 90]]), (0, "Affine: Shear", [("%d deg" % (shear,), iaa.Affine(shear=shear)) for shear in [-45, -25, 0, 25, 45]]), (0, "Affine: Modes", [(mode, iaa.Affine(translate_px=-32, mode=mode)) for mode in ["constant", "edge", "symmetric", "reflect", "wrap"]]), (0, "Affine: cval", [("%d" % (int(cval*255),), iaa.Affine(translate_px=-32, cval=int(cval*255), mode="constant")) for cval in [0.0, 0.25, 0.5, 0.75, 1.0]]), ( 2, "Affine: all", [ ( "", iaa.Affine( scale={"x": (0.5, 1.5), "y": (0.5, 1.5)}, translate_px={"x": (-32, 32), "y": (-32, 32)}, rotate=(-45, 45), shear=(-32, 32), mode=ia.ALL, cval=(0.0, 1.0) ) ) for _ in sm.xrange(5) ] ), (1, "ElasticTransformation\n(sigma=0.2)", [("alpha=%.1f" % (alpha,), iaa.ElasticTransformation(alpha=alpha, sigma=0.2)) for alpha in [0.1, 0.5, 1.0, 3.0, 9.0]]), (0, "Alpha\nwith EdgeDetect(1.0)", [("factor=%.1f" % (factor,), iaa.Alpha(factor=factor, first=iaa.EdgeDetect(1.0))) for factor in [0.0, 0.25, 0.5, 0.75, 1.0]]), (4, "Alpha\nwith EdgeDetect(1.0)\n(per channel)", [("factor=(%.2f, %.2f)" % (factor[0], factor[1]), iaa.Alpha(factor=factor, first=iaa.EdgeDetect(1.0), per_channel=0.5)) for factor in [(0.0, 0.2), (0.15, 0.35), (0.4, 0.6), (0.65, 0.85), (0.8, 1.0)]]), (15, "SimplexNoiseAlpha\nwith EdgeDetect(1.0)", [("", iaa.SimplexNoiseAlpha(first=iaa.EdgeDetect(1.0))) for alpha in [0.0, 0.25, 0.5, 0.75, 1.0]]), (9, "FrequencyNoiseAlpha\nwith EdgeDetect(1.0)", [("exponent=%.1f" % (exponent,), iaa.FrequencyNoiseAlpha(exponent=exponent, first=iaa.EdgeDetect(1.0), size_px_max=16, upscale_method="linear", sigmoid=False)) for exponent in [-4, -2, 0, 2, 4]]) ] print("[draw_per_augmenter_images] Augmenting...") rows = [] for (row_seed, row_name, augmenters) in rows_augmenters: ia.seed(row_seed) #for img_title, augmenter in augmenters: # #aug.reseed(1000) # pass row_images = [] row_keypoints = [] row_titles = [] for img_title, augmenter in augmenters: aug_det = augmenter.to_deterministic() row_images.append(aug_det.augment_image(image)) row_keypoints.append(aug_det.augment_keypoints(keypoints)[0]) row_titles.append(img_title) rows.append((row_name, row_images, row_keypoints, row_titles)) # matplotlib drawin routine """ print("[draw_per_augmenter_images] Plotting...") width = 8 height = int(1.5 * len(rows_augmenters)) fig = plt.figure(figsize=(width, height)) grid_rows = len(rows) grid_cols = 1 + 5 gs = gridspec.GridSpec(grid_rows, grid_cols, width_ratios=[2, 1, 1, 1, 1, 1]) axes = [] for i in sm.xrange(grid_rows): axes.append([plt.subplot(gs[i, col_idx]) for col_idx in sm.xrange(grid_cols)]) fig.tight_layout() #fig.subplots_adjust(bottom=0.2 / grid_rows, hspace=0.22) #fig.subplots_adjust(wspace=0.005, hspace=0.425, bottom=0.02) fig.subplots_adjust(wspace=0.005, hspace=0.005, bottom=0.02) for row_idx, (row_name, row_images, row_keypoints, row_titles) in enumerate(rows): axes_row = axes[row_idx] for col_idx in sm.xrange(grid_cols): ax = axes_row[col_idx] ax.cla() ax.axis("off") ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) if col_idx == 0: ax.text(0, 0.5, row_name, color="black") else: cell_image = row_images[col_idx-1] cell_keypoints = row_keypoints[col_idx-1] cell_image_kp = cell_keypoints.draw_on_image(cell_image, size=5) ax.imshow(cell_image_kp) x = 0 y = 145 #ax.text(x, y, row_titles[col_idx-1], color="black", backgroundcolor="white", fontsize=6) ax.text(x, y, row_titles[col_idx-1], color="black", fontsize=7) fig.savefig("examples.jpg", bbox_inches="tight") #plt.show() """ # simpler and faster drawing routine """ output_image = ExamplesImage(128, 128, 128+64, 32) for (row_name, row_images, row_keypoints, row_titles) in rows: row_images_kps = [] for image, keypoints in zip(row_images, row_keypoints): row_images_kps.append(keypoints.draw_on_image(image, size=5)) output_image.add_row(row_name, row_images_kps, row_titles) misc.imsave("examples.jpg", output_image.draw()) """ # routine to draw many single files seen = defaultdict(lambda: 0) markups = [] for (row_name, row_images, row_keypoints, row_titles) in rows: output_image = ExamplesImage(128, 128, 128+64, 32) row_images_kps = [] for image, keypoints in zip(row_images, row_keypoints): row_images_kps.append(keypoints.draw_on_image(image, size=5)) output_image.add_row(row_name, row_images_kps, row_titles) if "\n" in row_name: row_name_clean = row_name[0:row_name.find("\n")+1] else: row_name_clean = row_name row_name_clean = re.sub(r"[^a-z0-9]+", "_", row_name_clean.lower()) row_name_clean = row_name_clean.strip("_") if seen[row_name_clean] > 0: row_name_clean = "%s_%d" % (row_name_clean, seen[row_name_clean] + 1) fp = os.path.join(IMAGES_DIR, "examples_%s.jpg" % (row_name_clean,)) #misc.imsave(fp, output_image.draw()) save(fp, output_image.draw()) seen[row_name_clean] += 1 markup_descr = row_name.replace('"', '') \ .replace("\n", " ") \ .replace("(", "") \ .replace(")", "") markup = '![%s](%s?raw=true "%s")' % (markup_descr, fp, markup_descr) markups.append(markup) for markup in markups: print(markup)
def __getitem__(self, idx): patient_id = self.patient_ids[idx] img = self.load_image(patient_id) if self.crop_source != 1024: img_source_w = self.crop_source img_source_h = self.crop_source else: img_source_h, img_source_w = img.shape[:2] img_h, img_w = img.shape[:2] augmentation_sigma = { 10: dict(scale=0.1, angle=5.0, shear=2.5, gamma=0.2, hflip=False), 15: dict(scale=0.15, angle=6.0, shear=4.0, gamma=0.2, hflip=np.random.choice([True, False])), 20: dict(scale=0.15, angle=6.0, shear=4.0, gamma=0.25, hflip=np.random.choice([True, False])), }[self.augmentation_level] if self.is_training: cfg = utils.TransformCfg( crop_size=self.img_size, src_center_x=img_w / 2 + np.random.uniform(-32, 32), src_center_y=img_h / 2 + np.random.uniform(-32, 32), scale_x=self.img_size / img_source_w * (2**np.random.normal(0, augmentation_sigma['scale'])), scale_y=self.img_size / img_source_h * (2**np.random.normal(0, augmentation_sigma['scale'])), angle=np.random.normal(0, augmentation_sigma['angle']), shear=np.random.normal(0, augmentation_sigma['shear']), hflip=augmentation_sigma['hflip'], vflip=False) else: cfg = utils.TransformCfg(crop_size=self.img_size, src_center_x=img_w / 2, src_center_y=img_h / 2, scale_x=self.img_size / img_source_w, scale_y=self.img_size / img_source_h, angle=0, shear=0, hflip=False, vflip=False) crop = cfg.transform_image(img) if self.is_training: crop = np.power( crop, 2.0**np.random.normal(0, augmentation_sigma['gamma'])) if self.augmentation_level == 20: aug = iaa.Sequential([ iaa.Sometimes( 0.1, iaa.CoarseSaltAndPepper(p=(0.01, 0.01), size_percent=(0.1, 0.2))), iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0.0, 2.0))), iaa.Sometimes( 0.5, iaa.AdditiveGaussianNoise(scale=(0, 0.04 * 255))) ]) crop = aug.augment_image( np.clip( np.stack([crop, crop, crop], axis=2) * 255, 0, 255).astype(np.uint8))[:, :, 0].astype( np.float32) / 255.0 if self.augmentation_level == 15: aug = iaa.Sequential([ iaa.Sometimes(0.25, iaa.GaussianBlur(sigma=(0.0, 1.0))), iaa.Sometimes( 0.25, iaa.AdditiveGaussianNoise(scale=(0, 0.02 * 255))) ]) crop = aug.augment_image( np.clip( np.stack([crop, crop, crop], axis=2) * 255, 0, 255).astype(np.uint8))[:, :, 0].astype( np.float32) / 255.0 annotations = [] # print('patient_id', patient_id) for annotation in self.annotations[patient_id]: points = cfg.transform().inverse(annotation) res = np.zeros((1, 5)) p0 = np.min(points, axis=0) p1 = np.max(points, axis=0) res[0, 0:2] = p0 res[0, 2:4] = p1 res[0, 4] = 0 annotations.append(res) if len(annotations): annotations = np.row_stack(annotations) else: annotations = np.zeros((0, 5)) sample = { 'img': crop, 'annot': annotations, 'scale': 1.0, 'category': self.patient_categories[patient_id] } return sample
class NeuralNet: # History of accuracies on train set accs = [] # History of accuracies on test set val_accs = [] # Image augmenters augmenters = [ ia.Noop(), ia.CoarseSaltAndPepper(p=0.2, size_percent=0.30), ia.CoarseSaltAndPepper(p=0.4, size_percent=0.30), ia.Pad(px=(3, 0, 0, 0)), ia.Pad(px=(0, 3, 0, 0)), ia.Pad(px=(0, 0, 3, 0)), ia.Pad(px=(0, 0, 0, 3)), ia.GaussianBlur(sigma=0.25), ia.GaussianBlur(sigma=0.5), ia.GaussianBlur(sigma=1), ia.GaussianBlur(sigma=2), ia.Affine(rotate=-2), ia.Affine(rotate=2), ia.PiecewiseAffine(scale=0.007) ] def __init__( self, experiment_name: str, # Input shape input_shape: Tuple[int, int, int], # Mini batch size mb_size: Optional = 32, # Number of filters in each convolutional layer filters_count: Optional[List[int]] = None, # Size of kernel, common for each convolutional layer kernel_size: Optional[List[int]] = None, # Neurons count in each dense layer dense_layers: Optional[List[int]] = None, # Learning rate learning_rate: float = 0.005, # Number of epochs nb_epochs: int = 50000, # Steps per epoch. Each |steps_per_epoch| epochs net is evaluated on val set. steps_per_epoch: int = 1000, # Dropout after each dense layer (excluding last) dropout_rate: float = 0.5, # Whether or not augmentation should be performed when choosing next # batch (as opposed to augmenting the entire augment_on_the_fly: bool = True, augmenters: Optional[List[ia.Augmenter]] = None, min_label: int = 0, max_label: int = NUM_CLASSES, # Whether or not classification should be in binary mode. If yes, # *please* provide the |positive_class| parameter. binary_classification: bool = False, # ID of the subject that is considered "positive" in case of # binary classification. positive_class: int = 0, # If provided, will store checkpoints to ckpt_file ckpt_file: Optional[str] = None, ): self.experiment_name = experiment_name self.input_shape = input_shape self.mb_size = mb_size self.learning_rate = learning_rate self.nb_epochs = nb_epochs self.steps_per_epoch = steps_per_epoch self.dropout = dropout_rate self.augment_on_the_fly = augment_on_the_fly self.ckpt_file = ckpt_file self.binary_classification = binary_classification self.positive_class = positive_class self.num_classes = NUM_CLASSES if not binary_classification else 1 if dense_layers is None: dense_layers = [32, self.num_classes] self.dense_layers = dense_layers if filters_count is None: filters_count = [32, 64] self.filters_count = filters_count if kernel_size is None: kernel_size = [5, 5] self.kernel_size = kernel_size if binary_classification: self._confusion_matrix = np.zeros((2, 2)) else: self._confusion_matrix = np.zeros( (self.num_classes, self.num_classes)) if augmenters is not None: self.augmenters = augmenters self._get_data(range_beg=min_label, range_end=max_label) # Initialize logging. self.logger = logging.Logger("main_logger", level=logging.INFO) log_file = 'log.txt' formatter = logging.Formatter(fmt='{levelname:<7} {message}', style='{') console_handler = logging.StreamHandler() console_handler.setFormatter(formatter) file_handler = logging.FileHandler(log_file) file_handler.setFormatter(formatter) self.logger.addHandler(console_handler) self.logger.addHandler(file_handler) def _augment_single_input(self, inp_x: np.ndarray): """ Augments single input with given augmenter. :param inp_x: single input :return: augmented input """ augmenter = choice(self.augmenters) inp_x = inp_x.reshape([1] + list(inp_x.shape)) augmented = np.ndarray.astype( augmenter.augment_images(np.ndarray.astype(inp_x * 256, np.uint8)), np.float32) augmented = augmented * (1 / 256) augmented = augmented.reshape(inp_x.shape[1:]) return augmented def _augment_train_set(self) -> None: """ Augments entire training set with all augmenters. :return: None, appends augmented images to the train set. """ train_augs = [] for augmenter in self.augmenters: cur_aug = np.ndarray.astype( augmenter.augment_images( np.ndarray.astype(self.x_train * 256, np.uint8)), np.float32) cur_aug = cur_aug * (1 / 256) # Display augmented input, if you want # show_image(cur_aug[0].reshape(NN_INPUT_SIZE)) train_augs.append(cur_aug) self.x_train = np.concatenate([self.x_train] + train_augs) self.y_train = np.concatenate([self.y_train] * (1 + len(train_augs))) def _get_data(self, range_beg: int = 0, range_end: int = 52) -> None: """ :param range_beg, range_end: only samples such that label \in [range_beg, range_end) will be used. Sensible values for (range_beg, range_end) would be: * 00, 52 -> to use eurecom only * 52, 78 -> to use ias_lab_rgbd_only * 78, 98 -> to use superface_dataset only :return: self.(x|y)_(train|test) are set as a result """ # Load stored numpy arrays from files. logging.info("Loading data..") self.x_train = np.load(DB_LOCATION + '/gen/' + self.experiment_name + '_X_train.npy') self.y_train = np.load(DB_LOCATION + '/gen/' + self.experiment_name + '_Y_train.npy') self.x_test = np.load(DB_LOCATION + '/gen/' + self.experiment_name + '_X_test.npy') self.y_test = np.load(DB_LOCATION + '/gen/' + self.experiment_name + '_Y_test.npy') train_indices = [] test_indices = [] # Filter out samples out of [range_beg, range_end). for i in range(len(self.y_train)): if range_end > np.argmax(self.y_train[i]) >= range_beg: train_indices.append(i) for i in range(len(self.y_test)): if range_end > np.argmax(self.y_test[i]) >= range_beg: test_indices.append(i) shuffle(train_indices) self.x_train = self.x_train[train_indices] self.y_train = self.y_train[train_indices] self.x_test = self.x_test[test_indices] self.y_test = self.y_test[test_indices] if self.binary_classification: def to_binary(row): return np.array([ 1. ]) if np.argmax(row) == self.positive_class else np.array([0.]) self.y_train = np.apply_along_axis(to_binary, 1, self.y_train) self.y_test = np.apply_along_axis(to_binary, 1, self.y_test) # Show first input if you want show_image(self.x_train[0].reshape( [self.input_shape[0], self.input_shape[1] * self.input_shape[2]])) # Image augmentation. if not self.augment_on_the_fly: self._augment_train_set() logging.info("Loaded data..") def _visualize_kernels(self): """ For each convolutional layer, visualizes filters and convolved images. """ for layer_no in range(len(self.conv_layers)): num_filters = self.filters_count[layer_no] kernels = [] applied_kernels = [] for filter_no in range(num_filters): inp_x = self.input_shape[0] // (2**layer_no) inp_y = self.input_shape[1] // (2**layer_no) if layer_no == 0: tmp_str = 'conv2d/kernel:0' else: tmp_str = 'conv2d_%d/kernel:0' % layer_no kernel = [ v for v in tf.global_variables() if v.name == tmp_str ][0] kernel = kernel[:, :, :, filter_no] cur_conv_layer = self.conv_layers[layer_no] if layer_no == 0: kernel = tf.reshape(kernel, [ 1, self.kernel_size[0] * self.input_shape[-1], self.kernel_size[1], 1 ]) else: kernel = tf.reshape(kernel, [1] +\ [self.kernel_size[0] * self.filters_count[layer_no - 1], self.kernel_size[1]] + [1]) kernels.append(kernel) applied = tf.reshape(cur_conv_layer[0, :, :, filter_no], [1, inp_x, inp_y, 1]) tf.summary.image('conv{0}_filter{1}_kernel'.format( layer_no, filter_no), kernel, family='kernels_layer{0}'.format(layer_no), max_outputs=1) tf.summary.image('conv{0}_filter{1}_applied'.format( layer_no, filter_no), applied, family='convolved_layer_{0}'.format(layer_no), max_outputs=1) applied_kernels.append(applied) # Write concatenated patches to summary. concatenated_kernels = tf.concat(kernels, axis=2) kernels_name = "kernels_layer{0}".format(layer_no) tf.summary.image(kernels_name, concatenated_kernels, family='kernels_all_layers') concatenated_applieds = tf.concat(applied_kernels, axis=2) applieds_name = "convolved_layer{0}".format(layer_no) tf.summary.image(applieds_name, concatenated_applieds, family='convolved_all_layers') if self.conv_layers: # Merge all visualizations of kernels. self.merged_summary = tf.summary.merge_all() def _visualize_exciting_patches(self): """ For each convolutional layer, visualizes patches that excite each filter the most. """ # Initialize fetch handles for exciting patches and their respective responses. self.exciting_patches = [[None] * k for k in self.filters_count] self.patches_responses = [[None] * k for k in self.filters_count] self.flattened_exciting_patches = [[None] * k for k in self.filters_count] self.all_exciting_patches_at_layer = [None for _ in self.filters_count] for layer_no in range(len(self.conv_layers)): num_filters = self.filters_count[layer_no] cur_conv_layer = self.conv_layers[layer_no] for filter_no in range(num_filters): # Find top 10 responses to current filter, in the current mini-batch. inp_x = self.input_shape[0] // (2**layer_no) inp_y = self.input_shape[1] // (2**layer_no) single_filtered_flattened = tf.reshape( cur_conv_layer[:, :, :, filter_no], [self.eff_mb_size * inp_x * inp_y]) top10_vals, top10_indices = tf.nn.top_k( single_filtered_flattened, k=10, sorted=True) top10_reshaped = tf.map_fn( lambda sxy: [ sxy // (inp_x * inp_y), (sxy // inp_y) % inp_x, sxy % inp_y ], top10_indices, dtype=[tf.int32, tf.int32, tf.int32]) def safe_cut_patch(sxy, size, img, layer_no): """ :param (sample_no, x, y)@sxy :param size: size of patch to cut out :param img: image to cut it from :param layer_no: current layer number :return: Cuts out a patch of size (|size|) located at (x, y) on input #sample_no in current batch. """ sample_no, x, y = sxy x *= 2**layer_no y *= 2**layer_no pad_marg_x = size[0] // 2 pad_marg_y = size[1] // 2 padding = [[0, 0], [pad_marg_x, pad_marg_x], [pad_marg_y, pad_marg_y], [0, 0]] padded = tf.pad(img, padding) return padded[sample_no, x:x + size[0], y:y + size[1], :] # Find patches corresponding to the top 10 responses. # Store patches and responses in class-visible array to be retrieved later. self.exciting_patches[layer_no][filter_no] = \ tf.map_fn(lambda sxy: safe_cut_patch(sxy, size=(self.kernel_size[0] * (2 ** layer_no), self.kernel_size[1] * (2 ** layer_no)), img=tf.expand_dims(self.x[:, :, :, 0], axis=-1), layer_no=layer_no), top10_reshaped, dtype=tf.float32) self.patches_responses[layer_no][filter_no] = top10_vals # Flatten and concatenate the 10 patches to 2 dimensions for visualization. flattened_patches_shape = [1] + \ [10 * self.kernel_size[0] * (2 ** layer_no), self.kernel_size[1] * (2 ** layer_no)] + \ [1] # Write patches to summary. patch_name = "exciting_patches_filter{0}".format(filter_no) flattened_exciting_patches = tf.reshape( self.exciting_patches[layer_no][filter_no], flattened_patches_shape, name=patch_name) self.flattened_exciting_patches[layer_no][ filter_no] = flattened_exciting_patches self.all_exciting_patches_at_layer[layer_no] = tf.concat( self.flattened_exciting_patches[layer_no], axis=2) # Write concatenated patches to summary. all_patches_name = "exciting_patches_layer{0}".format(layer_no) tf.summary.image(all_patches_name, self.all_exciting_patches_at_layer[layer_no], family='exciting_all_layers') # Merge all summaries. self.merged_summary = tf.summary.merge_all() def _visualize_incorrect_answer_images(self): correct = tf.boolean_mask(self.x, self.correct) correct = tf.transpose(correct, perm=[0, 1, 3, 2]) correct = tf.reshape( correct, shape=[1, -1, self.input_shape[1] * self.input_shape[2], 1]) correct = tf.concat([ correct, tf.zeros( shape=[1, 1, self.input_shape[1] * self.input_shape[2], 1]) ], axis=1) tf.summary.image('correct', correct) incorrect = tf.boolean_mask(self.x, tf.logical_not(self.correct)) incorrect = tf.transpose(incorrect, perm=[0, 1, 3, 2]) incorrect = tf.reshape( incorrect, shape=[1, -1, self.input_shape[1] * self.input_shape[2], 1]) incorrect = tf.concat([ incorrect, tf.zeros( shape=[1, 1, self.input_shape[1] * self.input_shape[2], 1]) ], axis=1) tf.summary.image('incorrect', incorrect) # Merge all summaries. self.merged_summary = tf.summary.merge_all() def _create_convolutional_layers(self) -> None: signal = self.x for layer_no in range(len(self.filters_count)): num_filters = self.filters_count[layer_no] signal = tf.layers.batch_normalization(signal) # Init weights with std.dev = sqrt(2 / N) # input_size = int(signal.get_shape()[1]) * int( signal.get_shape()[2]) * int(signal.get_shape()[3]) w_init = tf.initializers.random_normal(stddev=sqrt(2 / input_size)) # Convolutional layer cur_conv_layer = tf.layers.conv2d(inputs=signal, filters=num_filters, kernel_size=self.kernel_size, kernel_initializer=w_init, padding='same') # Reduce image dimensions in half. cur_pool_layer = tf.layers.max_pooling2d(inputs=cur_conv_layer, pool_size=[2, 2], strides=2, padding='valid') self.conv_layers.append(cur_conv_layer) self.pool_layers.append(cur_pool_layer) # Set pooled image as current signal signal = cur_pool_layer return signal def _create_dense_layers(self) -> None: signal = self.x if not self.pool_layers else self.pool_layers[-1] input_size = int(signal.get_shape()[1]) * int( signal.get_shape()[2]) * int(signal.get_shape()[3]) signal = tf.reshape(signal, [self.eff_mb_size, input_size]) for num_neurons in self.dense_layers[:-1]: signal = tf.layers.batch_normalization(signal) # Init weights with std.dev = sqrt(2 / N) # https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf input_size = int(signal.get_shape()[1]) w_init = tf.initializers.random_normal(stddev=sqrt(2 / input_size)) cur_dense_layer = tf.layers.dense(inputs=signal, units=num_neurons, activation=tf.nn.leaky_relu, kernel_initializer=w_init) signal = cur_dense_layer # Apply dropout cur_dropout_layer = tf.layers.dropout(inputs=signal, rate=self.dropout) signal = cur_dropout_layer # Init weights with std.dev = sqrt(2 / N) input_size = int(signal.get_shape()[1]) w_init = tf.initializers.random_normal( stddev=tf.sqrt(tf.constant(2.) / input_size)) cur_layer = tf.layers.dense(inputs=signal, activation=tf.nn.sigmoid, units=self.dense_layers[-1], kernel_initializer=w_init) self.output_layer = cur_layer def _create_training_objectives(self) -> None: if self.binary_classification: self.preds = tf.cast(tf.round(self.output_layer), dtype=tf.int64) self.y_sparse = tf.cast(self.y, dtype=tf.int64) else: self.preds = tf.argmax(self.output_layer, axis=1) self.y_sparse = tf.argmax(self.y, axis=1) self.loss = tf.losses.log_loss(self.y, self.output_layer) self.correct = tf.reshape(tf.equal(self.y_sparse, self.preds), shape=[self.eff_mb_size]) self.accuracy = tf.reduce_mean(tf.cast(self.correct, tf.float32)) self.train_op = tf.train.GradientDescentOptimizer( self.learning_rate).minimize(self.loss) self.logger.info('list of variables {0}'.format( list(map(lambda x: x.name, tf.global_variables())))) def _create_model(self): self.x = tf.placeholder(dtype=tf.float32, shape=[None] + list(self.input_shape)) self.y = tf.placeholder(dtype=tf.float32, shape=[None, self.num_classes]) self.eff_mb_size = tf.shape(self.x)[0] # Effective batch size self.conv_layers = [] self.pool_layers = [] self._create_convolutional_layers() self._create_dense_layers() self._create_training_objectives() def train_on_batch(self, batch_x, batch_y): """ :return: [loss, accuracy] """ results = self.sess.run([self.loss, self.accuracy, self.train_op], feed_dict={ self.x: batch_x, self.y: batch_y }) self.accs.append(results[1]) return results[:2] def test_on_batch(self, batch_x, batch_y, global_step=1) -> Tuple[float, float, List[float]]: """ Note that this function does not fetch |self.train_op|, so that the weights are not updated. :param batch_x: :param batch_y: :param global_step: :return: (loss, accuracy, probs) """ if self.conv_layers: # Write summary results = self.sess.run([ self.loss, self.accuracy, self.output_layer, self.preds, self.merged_summary ], feed_dict={ self.x: batch_x, self.y: batch_y }) msum = results[4] self.writer.add_summary(msum, global_step=global_step) self.writer.flush() else: results = self.sess.run([self.loss, self.accuracy, self.preds], feed_dict={ self.x: batch_x, self.y: batch_y }) self.val_accs.append(results[1]) # Update confusion matrix preds = results[3] for i in range(len(batch_x)): self._confusion_matrix[np.argmax(batch_y[i]), preds[i]] += 1. return results[0], results[1], list(results[2]) def validate(self, global_step) -> ClassificationResults: """ :return: (loss, accuracy, auc_roc) Note that if self.binary_classification is False, auc_roc may be anything """ losses = [] accs = [] all_pred_probs = [] all_labels = [] for batch_no in range(self.x_test.shape[0] // self.mb_size + 1): inputs = self.x_test[batch_no * self.mb_size:(batch_no + 1) * self.mb_size] labels = self.y_test[batch_no * self.mb_size:(batch_no + 1) * self.mb_size] loss, acc, probs = self.test_on_batch(inputs, labels, global_step=global_step) losses.append(loss) accs.append(acc) all_pred_probs += probs all_labels += list(labels) all_pred_probs = np.array(all_pred_probs) all_labels = np.array(all_labels) all_labels = all_labels.astype(dtype=np.bool) loss = np.mean(losses) acc = np.mean(accs) return ClassificationResults(loss=loss, acc=acc, pred_probs=all_pred_probs, labels=all_labels, binary=self.binary_classification) def _next_training_batch(self) -> (np.ndarray, np.ndarray): batch = sample(list(range(self.x_train.shape[0])), self.mb_size) batch_x, batch_y = self.x_train[batch], self.y_train[batch] if self.augment_on_the_fly: for sample_no in range(self.mb_size): batch_x[sample_no] = self._augment_single_input( batch_x[sample_no]) return batch_x, batch_y def train_and_evaluate(self) -> ClassificationResults: """ Train and evaluate model. """ with tf.Session() as self.sess: # Initialize computation graph. self._create_model() # Add visualizations to computation graph. self._visualize_kernels() self._visualize_exciting_patches() self._visualize_incorrect_answer_images() # Initialize variables. if self.ckpt_file: saver = tf.train.Saver() try: saver.restore(self.sess, self.ckpt_file) except (tf.errors.InvalidArgumentError, tf.errors.NotFoundError): tf.global_variables_initializer().run() else: tf.global_variables_initializer().run() # Initialize summary writer. self.writer = tf.summary.FileWriter(logdir='conv_vis') # Initialize progress bar. bar = Bar('', max=self.steps_per_epoch, suffix='%(index)d/%(max)d ETA: %(eta)ds') for epoch_no in range(self.nb_epochs): self.logger.info("Epoch {epoch_no}/{nb_epochs}".format( epoch_no=epoch_no, nb_epochs=self.nb_epochs)) for step_no in range(self.steps_per_epoch): # Train model on next batch batch_x, batch_y = self._next_training_batch() results = self.train_on_batch(batch_x, batch_y) # Update bar bar.message = 'loss: {0[0]:.8f} acc: {0[1]:.3f} mean_acc: {1:.3f}'. \ format(results, np.mean(self.accs[-1000:]), ) bar.next() # Re-initialize progress bar bar.finish() bar = Bar('', max=self.steps_per_epoch, suffix='%(index)d/%(max)d ETA: %(eta)ds') # Store model if self.ckpt_file: saver.save(self.sess, self.ckpt_file) # Validate val_results = self.validate(global_step=epoch_no) loss, acc, auc_roc = val_results.loss, val_results.acc, val_results.get_auc_roc( ) if self.binary_classification: self.logger.info( "Validation results: Loss: {0}, accuracy: {1}, auc_roc: {2}" .format(loss, acc, auc_roc)) else: self.logger.info( "Validation results: Loss: {0}, accuracy: {1}".format( loss, acc)) # Dipslay confusion matrix show_image(self._confusion_matrix) return val_results
scale={ 'x': TruncatedNormal(1, .1, low=.8, high=1.2), 'y': TruncatedNormal(1, .1, low=.8, high=1.2), }, translate_percent={ 'x': TruncatedNormal(0, .1, low=-.2, high=.2), 'y': TruncatedNormal(0, .1, low=-.2, high=.2), }, rotate=(-180, 180), shear={ 'x': TruncatedNormal(0, 10, low=-30, high=30), 'y': TruncatedNormal(0, 10, low=-30, high=30), }, cval=(0, 255), ), aug.CoarseSaltAndPepper((.01, .1), size_percent=(5E-3, 5E-2)), ]) class Trainer(DefaultTrainer): @classmethod def build_train_loader(cls, cfg): return build_detection_train_loader(cfg, mapper=augment) def augment(record): record = deepcopy(record) image = plt.imread(record["filepath"]) annotations = record["annotations"] boxes = [annotation["bbox"] for annotation in annotations]
(gir_face, depth_face) = (face.gir_img, face.depth_img) if gir_face is None or depth_face is None: return None if np.isnan(gir_face).any() or np.isnan(depth_face).any(): return None try: face = normalized(face, rotate=False) face = hog_and_entropy(face) except ValueError: return None return face.get_fd_desc() augmenters = [ ia.Noop(), ia.CoarseSaltAndPepper(p=0.2, size_percent=0.30), ia.CoarseSaltAndPepper(p=0.4, size_percent=0.30), ia.Pad(px=(3, 0, 0, 0)), ia.Pad(px=(0, 3, 0, 0)), ia.Pad(px=(0, 0, 3, 0)), ia.Pad(px=(0, 0, 0, 3)), ia.GaussianBlur(sigma=0.25), ia.GaussianBlur(sigma=0.5), ia.GaussianBlur(sigma=1), ia.GaussianBlur(sigma=2), ia.Affine(rotate=-2), ia.Affine(rotate=2) ] def run_preprocess():
# Adds poisson noise (similar to gaussian but different distribution) to an image, sampled once per pixel from # a poisson distribution Poisson(s), where s is sampled per image and varies between lo and hi for percent of # all images (sampled once for all channels) and sampled three (RGB) times (channel-wise) # for the rest from the same poisson distribution: "Additive_Poisson_Noise": lambda lo, hi, percent: iaa.AdditivePoissonNoise(lam=(lo, hi), per_channel=percent), # Adds salt and pepper noise to an image, i.e. some white-ish and black-ish pixels. # Replaces percent of all pixels with salt and pepper noise "Salt_And_Pepper": lambda percent: iaa.SaltAndPepper(percent), # Adds coarse salt and pepper noise to image, i.e. rectangles that contain noisy white-ish and black-ish pixels # Replaces percent of all pixels with salt/pepper in an image that has lo to hi percent of the input image size, # then upscales the results to the input image size, leading to large rectangular areas being replaced. "Coarse_Salt_And_Pepper": lambda percent, lo, hi: iaa.CoarseSaltAndPepper(percent, size_percent=(lo, hi)), # Adds salt noise to an image, i.e white-ish pixels # Replaces percent of all pixels with salt noise "Salt": lambda percent: iaa.Salt(percent), # Adds coarse salt noise to image, i.e. rectangles that contain noisy white-ish pixels # Replaces percent of all pixels with salt in an image that has lo to hi percent of the input image size, # then upscales the results to the input image size, leading to large rectangular areas being replaced. "Coarse_Salt": lambda percent, lo, hi: iaa.CoarseSalt(percent, size_percent=(lo, hi)), # Adds Pepper noise to an image, i.e Black-ish pixels # Replaces percent of all pixels with Pepper noise "Pepper": lambda percent: iaa.Pepper(percent), # Adds coarse pepper noise to image, i.e. rectangles that contain noisy black-ish pixels
def transform(aug_type, magnitude, X): if aug_type == "crop": X_aug = iaa.Crop(px=(0, int(magnitude * 32))).augment_images(X) elif aug_type == "gaussian-blur": X_aug = iaa.GaussianBlur(sigma=(0, magnitude * 25.0)).augment_images(X) elif aug_type == "rotate": X_aug = iaa.Affine(rotate=(-180 * magnitude, 180 * magnitude)).augment_images(X) elif aug_type == "shear": X_aug = iaa.Affine(shear=(-90 * magnitude, 90 * magnitude)).augment_images(X) elif aug_type == "translate-x": X_aug = iaa.Affine( translate_percent={"x": (-magnitude, magnitude), "y": (0, 0)} ).augment_images(X) elif aug_type == "translate-y": X_aug = iaa.Affine( translate_percent={"x": (0, 0), "y": (-magnitude, magnitude)} ).augment_images(X) elif aug_type == "horizontal-flip": X_aug = iaa.Fliplr(magnitude).augment_images(X) elif aug_type == "vertical-flip": X_aug = iaa.Flipud(magnitude).augment_images(X) elif aug_type == "sharpen": X_aug = iaa.Sharpen( alpha=(0, 1.0), lightness=(0.50, 5 * magnitude) ).augment_images(X) elif aug_type == "emboss": X_aug = iaa.Emboss( alpha=(0, 1.0), strength=(0.0, 20.0 * magnitude) ).augment_images(X) elif aug_type == "additive-gaussian-noise": X_aug = iaa.AdditiveGaussianNoise( loc=0, scale=(0.0, magnitude * 255), per_channel=0.5 ).augment_images(X) elif aug_type == "dropout": X_aug = iaa.Dropout( (0.01, max(0.011, magnitude)), per_channel=0.5 ).augment_images( X ) # Dropout first argument should be smaller than second one elif aug_type == "coarse-dropout": X_aug = iaa.CoarseDropout( (0.03, 0.15), size_percent=(0.30, np.log10(magnitude * 3)), per_channel=0.2 ).augment_images(X) elif aug_type == "gamma-contrast": X_norm = normalize(X) X_aug_norm = iaa.GammaContrast(magnitude * 1.75).augment_images( X_norm ) # needs 0-1 values X_aug = denormalize(X_aug_norm) elif aug_type == "brighten": X_aug = iaa.Add( (int(-40 * magnitude), int(40 * magnitude)), per_channel=0.5 ).augment_images( X ) # brighten elif aug_type == "invert": X_aug = iaa.Invert(1.0).augment_images(X) # magnitude not used elif aug_type == "fog": X_aug = iaa.Fog().augment_images(X) # magnitude not used elif aug_type == "clouds": X_aug = iaa.Clouds().augment_images(X) # magnitude not used elif aug_type == "histogram-equalize": X_aug = iaa.AllChannelsHistogramEqualization().augment_images( X ) # magnitude not used elif aug_type == "super-pixels": # deprecated X_norm = normalize(X) X_norm2 = (X_norm * 2) - 1 X_aug_norm2 = iaa.Superpixels( p_replace=(0, magnitude), n_segments=(100, 100) ).augment_images(X_norm2) X_aug_norm = (X_aug_norm2 + 1) / 2 X_aug = denormalize(X_aug_norm) elif aug_type == "perspective-transform": X_norm = normalize(X) X_aug_norm = iaa.PerspectiveTransform( scale=(0.01, max(0.02, magnitude)) ).augment_images( X_norm ) # first scale param must be larger np.clip(X_aug_norm, 0.0, 1.0, out=X_aug_norm) X_aug = denormalize(X_aug_norm) elif aug_type == "elastic-transform": # deprecated X_norm = normalize(X) X_norm2 = (X_norm * 2) - 1 X_aug_norm2 = iaa.ElasticTransformation( alpha=(0.0, max(0.5, magnitude * 300)), sigma=5.0 ).augment_images(X_norm2) X_aug_norm = (X_aug_norm2 + 1) / 2 X_aug = denormalize(X_aug_norm) elif aug_type == "add-to-hue-and-saturation": X_aug = iaa.AddToHueAndSaturation( (int(-45 * magnitude), int(45 * magnitude)) ).augment_images(X) elif aug_type == "coarse-salt-pepper": X_aug = iaa.CoarseSaltAndPepper(p=0.2, size_percent=magnitude).augment_images(X) elif aug_type == "grayscale": X_aug = iaa.Grayscale(alpha=(0.0, magnitude)).augment_images(X) else: raise ValueError return X_aug
def main(): parser = argparse.ArgumentParser(description="Check augmenters visually.") parser.add_argument( "--only", default=None, help= "If this is set, then only the results of an augmenter with this name will be shown. " "Optionally, comma-separated list.", required=False) args = parser.parse_args() images = [ ia.quokka_square(size=(128, 128)), ia.imresize_single_image(data.astronaut(), (128, 128)) ] keypoints = [ ia.KeypointsOnImage([ ia.Keypoint(x=50, y=40), ia.Keypoint(x=70, y=38), ia.Keypoint(x=62, y=52) ], shape=images[0].shape), ia.KeypointsOnImage([ ia.Keypoint(x=55, y=32), ia.Keypoint(x=42, y=95), ia.Keypoint(x=75, y=89) ], shape=images[1].shape) ] bounding_boxes = [ ia.BoundingBoxesOnImage([ ia.BoundingBox(x1=10, y1=10, x2=20, y2=20), ia.BoundingBox(x1=40, y1=50, x2=70, y2=60) ], shape=images[0].shape), ia.BoundingBoxesOnImage([ ia.BoundingBox(x1=10, y1=10, x2=20, y2=20), ia.BoundingBox(x1=40, y1=50, x2=70, y2=60) ], shape=images[1].shape) ] augmenters = [ iaa.Sequential([ iaa.CoarseDropout(p=0.5, size_percent=0.05), iaa.AdditiveGaussianNoise(scale=0.1 * 255), iaa.Crop(percent=0.1) ], name="Sequential"), iaa.SomeOf(2, children=[ iaa.CoarseDropout(p=0.5, size_percent=0.05), iaa.AdditiveGaussianNoise(scale=0.1 * 255), iaa.Crop(percent=0.1) ], name="SomeOf"), iaa.OneOf(children=[ iaa.CoarseDropout(p=0.5, size_percent=0.05), iaa.AdditiveGaussianNoise(scale=0.1 * 255), iaa.Crop(percent=0.1) ], name="OneOf"), iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(scale=0.1 * 255), name="Sometimes"), iaa.WithColorspace("HSV", children=[iaa.Add(20)], name="WithColorspace"), iaa.WithChannels([0], children=[iaa.Add(20)], name="WithChannels"), iaa.AddToHueAndSaturation((-20, 20), per_channel=True, name="AddToHueAndSaturation"), iaa.Noop(name="Noop"), iaa.Resize({ "width": 64, "height": 64 }, name="Resize"), iaa.CropAndPad(px=(-8, 8), name="CropAndPad-px"), iaa.Pad(px=(0, 8), name="Pad-px"), iaa.Crop(px=(0, 8), name="Crop-px"), iaa.Crop(percent=(0, 0.1), name="Crop-percent"), iaa.Fliplr(0.5, name="Fliplr"), iaa.Flipud(0.5, name="Flipud"), iaa.Superpixels(p_replace=0.75, n_segments=50, name="Superpixels"), iaa.Grayscale(0.5, name="Grayscale0.5"), iaa.Grayscale(1.0, name="Grayscale1.0"), iaa.GaussianBlur((0, 3.0), name="GaussianBlur"), iaa.AverageBlur(k=(3, 11), name="AverageBlur"), iaa.MedianBlur(k=(3, 11), name="MedianBlur"), iaa.BilateralBlur(d=10, name="BilateralBlur"), iaa.Sharpen(alpha=(0.1, 1.0), lightness=(0, 2.0), name="Sharpen"), iaa.Emboss(alpha=(0.1, 1.0), strength=(0, 2.0), name="Emboss"), iaa.EdgeDetect(alpha=(0.1, 1.0), name="EdgeDetect"), iaa.DirectedEdgeDetect(alpha=(0.1, 1.0), direction=(0, 1.0), name="DirectedEdgeDetect"), iaa.Add((-50, 50), name="Add"), iaa.Add((-50, 50), per_channel=True, name="AddPerChannel"), iaa.AddElementwise((-50, 50), name="AddElementwise"), iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.1 * 255), name="AdditiveGaussianNoise"), iaa.Multiply((0.5, 1.5), name="Multiply"), iaa.Multiply((0.5, 1.5), per_channel=True, name="MultiplyPerChannel"), iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"), iaa.Dropout((0.0, 0.1), name="Dropout"), iaa.CoarseDropout(p=0.05, size_percent=(0.05, 0.5), name="CoarseDropout"), iaa.Invert(p=0.5, name="Invert"), iaa.Invert(p=0.5, per_channel=True, name="InvertPerChannel"), iaa.ContrastNormalization(alpha=(0.5, 2.0), name="ContrastNormalization"), iaa.SaltAndPepper(p=0.05, name="SaltAndPepper"), iaa.Salt(p=0.05, name="Salt"), iaa.Pepper(p=0.05, name="Pepper"), iaa.CoarseSaltAndPepper(p=0.05, size_percent=(0.01, 0.1), name="CoarseSaltAndPepper"), iaa.CoarseSalt(p=0.05, size_percent=(0.01, 0.1), name="CoarseSalt"), iaa.CoarsePepper(p=0.05, size_percent=(0.01, 0.1), name="CoarsePepper"), iaa.Affine(scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) }, translate_px={ "x": (-16, 16), "y": (-16, 16) }, rotate=(-45, 45), shear=(-16, 16), order=ia.ALL, cval=(0, 255), mode=ia.ALL, name="Affine"), iaa.PiecewiseAffine(scale=0.03, nb_rows=(2, 6), nb_cols=(2, 6), name="PiecewiseAffine"), iaa.PerspectiveTransform(scale=0.1, name="PerspectiveTransform"), iaa.ElasticTransformation(alpha=(0.5, 8.0), sigma=1.0, name="ElasticTransformation"), iaa.Alpha(factor=(0.0, 1.0), first=iaa.Add(100), second=iaa.Dropout(0.5), per_channel=False, name="Alpha"), iaa.Alpha(factor=(0.0, 1.0), first=iaa.Add(100), second=iaa.Dropout(0.5), per_channel=True, name="AlphaPerChannel"), iaa.Alpha(factor=(0.0, 1.0), first=iaa.Affine(rotate=(-45, 45)), per_channel=True, name="AlphaAffine"), iaa.AlphaElementwise(factor=(0.0, 1.0), first=iaa.Add(50), second=iaa.ContrastNormalization(2.0), per_channel=False, name="AlphaElementwise"), iaa.AlphaElementwise(factor=(0.0, 1.0), first=iaa.Add(50), second=iaa.ContrastNormalization(2.0), per_channel=True, name="AlphaElementwisePerChannel"), iaa.AlphaElementwise(factor=(0.0, 1.0), first=iaa.Affine(rotate=(-45, 45)), per_channel=True, name="AlphaElementwiseAffine"), iaa.SimplexNoiseAlpha(first=iaa.EdgeDetect(1.0), per_channel=False, name="SimplexNoiseAlpha"), iaa.FrequencyNoiseAlpha(first=iaa.EdgeDetect(1.0), per_channel=False, name="FrequencyNoiseAlpha") ] augmenters.append( iaa.Sequential([iaa.Sometimes(0.2, aug.copy()) for aug in augmenters], name="Sequential")) augmenters.append( iaa.Sometimes(0.5, [aug.copy() for aug in augmenters], name="Sometimes")) for augmenter in augmenters: if args.only is None or augmenter.name in [ v.strip() for v in args.only.split(",") ]: print("Augmenter: %s" % (augmenter.name, )) grid = [] for image, kps, bbs in zip(images, keypoints, bounding_boxes): aug_det = augmenter.to_deterministic() imgs_aug = aug_det.augment_images( np.tile(image[np.newaxis, ...], (16, 1, 1, 1))) kps_aug = aug_det.augment_keypoints([kps] * 16) bbs_aug = aug_det.augment_bounding_boxes([bbs] * 16) imgs_aug_drawn = [ kps_aug_one.draw_on_image(img_aug) for img_aug, kps_aug_one in zip(imgs_aug, kps_aug) ] imgs_aug_drawn = [ bbs_aug_one.draw_on_image(img_aug) for img_aug, bbs_aug_one in zip(imgs_aug_drawn, bbs_aug) ] grid.append(np.hstack(imgs_aug_drawn)) ia.imshow(np.vstack(grid))
def transform(self, image: np.ndarray, target: str, condition: int) -> Tuple[torch.Tensor, torch.Tensor, int]: """Transforms and normalizes the data. If in training mode the data is augmentated. Args: image (np.ndarray): Image to transform target (str): Training target condition (int): Condition Returns: Tuple[torch.Tensor, torch.Tensor, int]: Augmented image, target and condition """ # Resize resize = iaa.Resize({"height": 224, "width": 224}) image = resize.augment_image(image) # Random horizontal flipping and erase if self.train: if random.random() > 0.5: # flip image flip = iaa.HorizontalFlip(1.0) image = flip.augment_image(image) # flip class if target == "a": target = "d" elif target == "d": target = "a" # flip condition if condition == 2: condition = 4 elif condition == 4: condition = 2 #imgaug seq = iaa.Sequential([ iaa.Sometimes(0.5, iaa.Affine(rotate=(-15, 15))), iaa.Sometimes(0.3, iaa.EdgeDetect(alpha=(0.3, 0.8))), iaa.Sometimes(0.5, iaa.MotionBlur(k=iap.Choice([3, 5, 7]))), iaa.OneOf([ iaa.Dropout(p=(0, 0.3), per_channel=0.5), iaa.CoarseSaltAndPepper(0.05, size_percent=(0.01, 0.09)) ]), iaa.Sometimes(0.5, iaa.AllChannelsCLAHE(clip_limit=(1, 10))) ]) image = seq.augment_image(image) # Transform to tensor image = TF.to_tensor(image) # Transform to one hot encoding target = torch.tensor(self.target_dict[target]) #normalize image to fit pretrained vgg model normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) image = normalize(image) return image, target, condition