def _augment_batch(self, images, corners): aug = iaa.SomeOf( (0, None), [ iaa.KeepSizeByResize( iaa.Affine( translate_px={"x": (10, 30)}, rotate=(-5, 5), mode="edge", fit_output=True, )), iaa.KeepSizeByResize( iaa.Affine(shear=(-10, 10), mode="edge", fit_output=True)), iaa.AddToHueAndSaturation((-50, 50)), iaa.AverageBlur(k=(2, 5)), ], random_order=True, ) # Convert array of corners to list of KeypointsOnImage instances for use with the augmenter. keypoints_from_corners = [ KeypointsOnImage( [Keypoint(x=point[0], y=point[1]) for point in img_corners], shape=self.dim, ) for img_corners in corners ] images_augm, keypoints_augm = aug.augment( images=images, keypoints=keypoints_from_corners) # Convert augmented keypoints back to array of size (batch_size, 4, 2). corners_augm = np.array( [keypoints.to_xy_array() for keypoints in keypoints_augm]) return images_augm, corners_augm
def chapter_augmenters_keepsizebyresize(): # TODO add example images for heatmaps, segmaps fn_start = "size/keepsizebyresize" aug = iaa.KeepSizeByResize(iaa.Crop((20, 40), keep_size=False)) run_and_save_augseq(fn_start + "_crop.jpg", aug, [ia.quokka(size=(120, 120)) for _ in range(4 * 2)], cols=4, rows=2) aug = iaa.KeepSizeByResize(iaa.Crop((20, 40), keep_size=False), interpolation="nearest") run_and_save_augseq(fn_start + "_crop_nearest.jpg", aug, [ia.quokka(size=(120, 120)) for _ in range(4 * 2)], cols=4, rows=2) aug = iaa.KeepSizeByResize( iaa.Crop((20, 40), keep_size=False), interpolation=["nearest", "cubic"], interpolation_heatmaps=iaa.KeepSizeByResize.SAME_AS_IMAGES, interpolation_segmaps=iaa.KeepSizeByResize.NO_RESIZE) run_and_save_augseq(fn_start + "_various_augmentables.jpg", aug, [ia.quokka(size=(120, 120)) for _ in range(4 * 4)], cols=4, rows=4)
def transform(self, in_data): augmenter = iaa.Sequential([ iaa.LinearContrast(alpha=(0.8, 1.2)), iaa.WithColorspace( to_colorspace="HSV", from_colorspace="RGB", children=iaa.Sequential([ # SV iaa.WithChannels( (1, 2), iaa.Multiply(mul=(0.8, 1.2), per_channel=True), ), # H iaa.WithChannels( (0, ), iaa.Multiply(mul=(0.95, 1.05), per_channel=True), ), ]), ), iaa.GaussianBlur(sigma=(0, 1.0)), iaa.KeepSizeByResize(children=iaa.Resize((0.25, 1.0))), ]) augmenter = augmenter.to_deterministic() for index in self._indices: in_data[index] = augmenter.augment_image(in_data[index])
def YOLO(): """ Data augmentation model for YOLOv3 training """ return iaa.Sequential([ iaa.KeepSizeByResize( iaa.Affine( scale=iap.Normal(1, 0.125), translate_percent=0.1, cval=128, )), iaa.Fliplr(0.5), iaa.Resize({ "height": iap.Normal(1, 0.1), "width": iap.Normal(1, 0.1) }), iaa.Resize({ "longer-side": 416, "shorter-side": "keep-aspect-ratio" }), iaa.PadToFixedSize(416, 416, pad_cval=128), iaa.MultiplyHueAndSaturation(mul_hue=iap.Uniform(0, 2), mul_saturation=iap.Uniform(1 / 1.5, 1.5)), iaa.AssertShape((None, 416, 416, 3)), ])
def get_fg_augmentation(): seq = iaa.Sequential([ iaa.Resize({ 'height': 'keep', 'width': (0.9, 1.1) }), iaa.KeepSizeByResize(iaa.Rotate((-15, 15), fit_output=True)) ]) return seq
def getImageAug(): seq = iaa.Sequential( [ iaa.SomeOf( (0, 2), [ iaa.Identity(), iaa.AverageBlur(k=((3, 5), (5, 7))), iaa.Rotate((-45, 45)), iaa.Affine(scale=(0.5, 0.95)), iaa.Multiply((0.50, 1.1)) #,iaa.BlendAlphaRegularGrid(nb_rows=(4, 6), nb_cols=(1, 4), # foreground=iaa.Multiply(0.0)) #,iaa.Cartoon() , iaa.Cutout( nb_iterations=(1, 3), size=0.2, squared=False, cval=0), iaa.Affine(shear=(-48, 48)), iaa.Affine(translate_px={ "x": (-42, 42), "y": (-36, 36) }), iaa.KeepSizeByResize( iaa.Resize({ "height": (0.70, 0.90), "width": (0.70, 0.90) })), iaa.CropAndPad(percent=(-0.2, 0.2)) #,iaa.PiecewiseAffine(scale=(0.01, 0.05)) , iaa.PerspectiveTransform(scale=(0.01, 0.1)) #,iaa.WithPolarWarping(iaa.CropAndPad(percent=(-0.1, 0.1))) #,iaa.ElasticTransformation(alpha=(0, 3.0), sigma=0.5) ]) #,iaa.SaveDebugImageEveryNBatches(folder_path, 100) ], random_order=True) return seq
def _augment_rgb(rgb): augmenter = iaa.Sequential([ iaa.LinearContrast(alpha=(0.8, 1.2)), iaa.WithColorspace( to_colorspace="HSV", from_colorspace="RGB", children=iaa.Sequential([ # SV iaa.WithChannels( (1, 2), iaa.Multiply(mul=(0.8, 1.2), per_channel=True), ), # H iaa.WithChannels( (0, ), iaa.Multiply(mul=(0.95, 1.05), per_channel=True), ), ]), ), iaa.GaussianBlur(sigma=(0, 1.0)), iaa.KeepSizeByResize(children=iaa.Resize((0.25, 1.0))), ]) return augmenter.augment_image(rgb)
seq = iaa.Sequential([ iaa.SomeOf((0, 2), [ iaa.Identity(), iaa.AverageBlur(k=((3, 5), (5, 7))), iaa.Rotate((-45, 45)), iaa.Affine(scale=(0.5, 0.95)), iaa.Multiply((0.50, 1.1)), iaa.Cutout(nb_iterations=(1, 3), size=0.2, squared=False, cval=0), iaa.Affine(shear=(-48, 48)), iaa.Affine(translate_px={ "x": (-42, 42), "y": (-36, 36) }), iaa.KeepSizeByResize( iaa.Resize({ "height": (0.70, 0.90), "width": (0.70, 0.90) })), iaa.CropAndPad(percent=(-0.2, 0.2)), iaa.PerspectiveTransform(scale=(0.01, 0.1)) ]) ], random_order=True) def get_recent_model_dir(model_root_dir): import os, glob from pathlib import Path model_root_dir = "models" paths = sorted(Path(model_root_dir).iterdir(), key=os.path.getmtime)[::-1] for p in paths:
def create_augmenters(height, width, height_augmentable, width_augmentable, only_augmenters): def lambda_func_images(images, random_state, parents, hooks): return images def lambda_func_heatmaps(heatmaps, random_state, parents, hooks): return heatmaps def lambda_func_keypoints(keypoints, random_state, parents, hooks): return keypoints def assertlambda_func_images(images, random_state, parents, hooks): return True def assertlambda_func_heatmaps(heatmaps, random_state, parents, hooks): return True def assertlambda_func_keypoints(keypoints, random_state, parents, hooks): return True augmenters_meta = [ iaa.Sequential([iaa.Noop(), iaa.Noop()], random_order=False, name="Sequential_2xNoop"), iaa.Sequential([iaa.Noop(), iaa.Noop()], random_order=True, name="Sequential_2xNoop_random_order"), iaa.SomeOf((1, 3), [iaa.Noop(), iaa.Noop(), iaa.Noop()], random_order=False, name="SomeOf_3xNoop"), iaa.SomeOf((1, 3), [iaa.Noop(), iaa.Noop(), iaa.Noop()], random_order=True, name="SomeOf_3xNoop_random_order"), iaa.OneOf([iaa.Noop(), iaa.Noop(), iaa.Noop()], name="OneOf_3xNoop"), iaa.Sometimes(0.5, iaa.Noop(), name="Sometimes_Noop"), iaa.WithChannels([1, 2], iaa.Noop(), name="WithChannels_1_and_2_Noop"), iaa.Noop(name="Noop"), iaa.Lambda(func_images=lambda_func_images, func_heatmaps=lambda_func_heatmaps, func_keypoints=lambda_func_keypoints, name="Lambda"), iaa.AssertLambda(func_images=assertlambda_func_images, func_heatmaps=assertlambda_func_heatmaps, func_keypoints=assertlambda_func_keypoints, name="AssertLambda"), iaa.AssertShape((None, height_augmentable, width_augmentable, None), name="AssertShape"), iaa.ChannelShuffle(0.5, name="ChannelShuffle") ] augmenters_arithmetic = [ iaa.Add((-10, 10), name="Add"), iaa.AddElementwise((-10, 10), name="AddElementwise"), #iaa.AddElementwise((-500, 500), name="AddElementwise"), iaa.AdditiveGaussianNoise(scale=(5, 10), name="AdditiveGaussianNoise"), iaa.AdditiveLaplaceNoise(scale=(5, 10), name="AdditiveLaplaceNoise"), iaa.AdditivePoissonNoise(lam=(1, 5), name="AdditivePoissonNoise"), iaa.Multiply((0.5, 1.5), name="Multiply"), iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"), iaa.Dropout((0.01, 0.05), name="Dropout"), iaa.CoarseDropout((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseDropout"), iaa.ReplaceElementwise((0.01, 0.05), (0, 255), name="ReplaceElementwise"), #iaa.ReplaceElementwise((0.95, 0.99), (0, 255), name="ReplaceElementwise"), iaa.SaltAndPepper((0.01, 0.05), name="SaltAndPepper"), iaa.ImpulseNoise((0.01, 0.05), name="ImpulseNoise"), iaa.CoarseSaltAndPepper((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseSaltAndPepper"), iaa.Salt((0.01, 0.05), name="Salt"), iaa.CoarseSalt((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseSalt"), iaa.Pepper((0.01, 0.05), name="Pepper"), iaa.CoarsePepper((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarsePepper"), iaa.Invert(0.1, name="Invert"), # ContrastNormalization iaa.JpegCompression((50, 99), name="JpegCompression") ] augmenters_blend = [ iaa.Alpha((0.01, 0.99), iaa.Noop(), name="Alpha"), iaa.AlphaElementwise((0.01, 0.99), iaa.Noop(), name="AlphaElementwise"), iaa.SimplexNoiseAlpha(iaa.Noop(), name="SimplexNoiseAlpha"), iaa.FrequencyNoiseAlpha((-2.0, 2.0), iaa.Noop(), name="FrequencyNoiseAlpha") ] augmenters_blur = [ iaa.GaussianBlur(sigma=(1.0, 5.0), name="GaussianBlur"), iaa.AverageBlur(k=(3, 11), name="AverageBlur"), iaa.MedianBlur(k=(3, 11), name="MedianBlur"), iaa.BilateralBlur(d=(3, 11), name="BilateralBlur"), iaa.MotionBlur(k=(3, 11), name="MotionBlur") ] augmenters_color = [ # InColorspace (deprecated) iaa.WithColorspace(to_colorspace="HSV", children=iaa.Noop(), name="WithColorspace"), iaa.WithHueAndSaturation(children=iaa.Noop(), name="WithHueAndSaturation"), iaa.MultiplyHueAndSaturation((0.8, 1.2), name="MultiplyHueAndSaturation"), iaa.MultiplyHue((-1.0, 1.0), name="MultiplyHue"), iaa.MultiplySaturation((0.8, 1.2), name="MultiplySaturation"), iaa.AddToHueAndSaturation((-10, 10), name="AddToHueAndSaturation"), iaa.AddToHue((-10, 10), name="AddToHue"), iaa.AddToSaturation((-10, 10), name="AddToSaturation"), iaa.ChangeColorspace(to_colorspace="HSV", name="ChangeColorspace"), iaa.Grayscale((0.01, 0.99), name="Grayscale"), iaa.KMeansColorQuantization((2, 16), name="KMeansColorQuantization"), iaa.UniformColorQuantization((2, 16), name="UniformColorQuantization") ] augmenters_contrast = [ iaa.GammaContrast(gamma=(0.5, 2.0), name="GammaContrast"), iaa.SigmoidContrast(gain=(5, 20), cutoff=(0.25, 0.75), name="SigmoidContrast"), iaa.LogContrast(gain=(0.7, 1.0), name="LogContrast"), iaa.LinearContrast((0.5, 1.5), name="LinearContrast"), iaa.AllChannelsCLAHE(clip_limit=(2, 10), tile_grid_size_px=(3, 11), name="AllChannelsCLAHE"), iaa.CLAHE(clip_limit=(2, 10), tile_grid_size_px=(3, 11), to_colorspace="HSV", name="CLAHE"), iaa.AllChannelsHistogramEqualization( name="AllChannelsHistogramEqualization"), iaa.HistogramEqualization(to_colorspace="HSV", name="HistogramEqualization"), ] augmenters_convolutional = [ iaa.Convolve(np.float32([[0, 0, 0], [0, 1, 0], [0, 0, 0]]), name="Convolve_3x3"), iaa.Sharpen(alpha=(0.01, 0.99), lightness=(0.5, 2), name="Sharpen"), iaa.Emboss(alpha=(0.01, 0.99), strength=(0, 2), name="Emboss"), iaa.EdgeDetect(alpha=(0.01, 0.99), name="EdgeDetect"), iaa.DirectedEdgeDetect(alpha=(0.01, 0.99), name="DirectedEdgeDetect") ] augmenters_edges = [iaa.Canny(alpha=(0.01, 0.99), name="Canny")] augmenters_flip = [ iaa.Fliplr(1.0, name="Fliplr"), iaa.Flipud(1.0, name="Flipud") ] augmenters_geometric = [ iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=0, mode="constant", cval=(0, 255), name="Affine_order_0_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=1, mode="constant", cval=(0, 255), name="Affine_order_1_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=3, mode="constant", cval=(0, 255), name="Affine_order_3_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=1, mode="edge", cval=(0, 255), name="Affine_order_1_edge"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=1, mode="constant", cval=(0, 255), backend="skimage", name="Affine_order_1_constant_skimage"), # TODO AffineCv2 iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=1, mode="constant", name="PiecewiseAffine_4x4_order_1_constant"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=0, mode="constant", name="PiecewiseAffine_4x4_order_0_constant"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=1, mode="edge", name="PiecewiseAffine_4x4_order_1_edge"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=8, nb_cols=8, order=1, mode="constant", name="PiecewiseAffine_8x8_order_1_constant"), iaa.PerspectiveTransform(scale=(0.01, 0.05), keep_size=False, name="PerspectiveTransform"), iaa.PerspectiveTransform(scale=(0.01, 0.05), keep_size=True, name="PerspectiveTransform_keep_size"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=0, mode="constant", cval=0, name="ElasticTransformation_order_0_constant"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="constant", cval=0, name="ElasticTransformation_order_1_constant"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="nearest", cval=0, name="ElasticTransformation_order_1_nearest"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="reflect", cval=0, name="ElasticTransformation_order_1_reflect"), iaa.Rot90((1, 3), keep_size=False, name="Rot90"), iaa.Rot90((1, 3), keep_size=True, name="Rot90_keep_size") ] augmenters_pooling = [ iaa.AveragePooling(kernel_size=(1, 16), keep_size=False, name="AveragePooling"), iaa.AveragePooling(kernel_size=(1, 16), keep_size=True, name="AveragePooling_keep_size"), iaa.MaxPooling(kernel_size=(1, 16), keep_size=False, name="MaxPooling"), iaa.MaxPooling(kernel_size=(1, 16), keep_size=True, name="MaxPooling_keep_size"), iaa.MinPooling(kernel_size=(1, 16), keep_size=False, name="MinPooling"), iaa.MinPooling(kernel_size=(1, 16), keep_size=True, name="MinPooling_keep_size"), iaa.MedianPooling(kernel_size=(1, 16), keep_size=False, name="MedianPooling"), iaa.MedianPooling(kernel_size=(1, 16), keep_size=True, name="MedianPooling_keep_size") ] augmenters_segmentation = [ iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=64, interpolation="cubic", name="Superpixels_max_size_64_cubic"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=64, interpolation="linear", name="Superpixels_max_size_64_linear"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=128, interpolation="linear", name="Superpixels_max_size_128_linear"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=224, interpolation="linear", name="Superpixels_max_size_224_linear"), iaa.UniformVoronoi(n_points=(250, 1000), name="UniformVoronoi"), iaa.RegularGridVoronoi(n_rows=(16, 31), n_cols=(16, 31), name="RegularGridVoronoi"), iaa.RelativeRegularGridVoronoi(n_rows_frac=(0.07, 0.14), n_cols_frac=(0.07, 0.14), name="RelativeRegularGridVoronoi"), ] augmenters_size = [ iaa.Resize((0.8, 1.2), interpolation="nearest", name="Resize_nearest"), iaa.Resize((0.8, 1.2), interpolation="linear", name="Resize_linear"), iaa.Resize((0.8, 1.2), interpolation="cubic", name="Resize_cubic"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="constant", pad_cval=(0, 255), keep_size=False, name="CropAndPad"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="edge", pad_cval=(0, 255), keep_size=False, name="CropAndPad_edge"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="constant", pad_cval=(0, 255), name="CropAndPad_keep_size"), iaa.Pad(percent=(0.05, 0.2), pad_mode="constant", pad_cval=(0, 255), keep_size=False, name="Pad"), iaa.Pad(percent=(0.05, 0.2), pad_mode="edge", pad_cval=(0, 255), keep_size=False, name="Pad_edge"), iaa.Pad(percent=(0.05, 0.2), pad_mode="constant", pad_cval=(0, 255), name="Pad_keep_size"), iaa.Crop(percent=(0.05, 0.2), keep_size=False, name="Crop"), iaa.Crop(percent=(0.05, 0.2), name="Crop_keep_size"), iaa.PadToFixedSize(width=width + 10, height=height + 10, pad_mode="constant", pad_cval=(0, 255), name="PadToFixedSize"), iaa.CropToFixedSize(width=width - 10, height=height - 10, name="CropToFixedSize"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10, width=width - 10), interpolation="nearest", name="KeepSizeByResize_CropToFixedSize_nearest"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10, width=width - 10), interpolation="linear", name="KeepSizeByResize_CropToFixedSize_linear"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10, width=width - 10), interpolation="cubic", name="KeepSizeByResize_CropToFixedSize_cubic"), ] augmenters_weather = [ iaa.FastSnowyLandscape(lightness_threshold=(100, 255), lightness_multiplier=(1.0, 4.0), name="FastSnowyLandscape"), iaa.Clouds(name="Clouds"), iaa.Fog(name="Fog"), iaa.CloudLayer(intensity_mean=(196, 255), intensity_freq_exponent=(-2.5, -2.0), intensity_coarse_scale=10, alpha_min=0, alpha_multiplier=(0.25, 0.75), alpha_size_px_max=(2, 8), alpha_freq_exponent=(-2.5, -2.0), sparsity=(0.8, 1.0), density_multiplier=(0.5, 1.0), name="CloudLayer"), iaa.Snowflakes(name="Snowflakes"), iaa.SnowflakesLayer(density=(0.005, 0.075), density_uniformity=(0.3, 0.9), flake_size=(0.2, 0.7), flake_size_uniformity=(0.4, 0.8), angle=(-30, 30), speed=(0.007, 0.03), blur_sigma_fraction=(0.0001, 0.001), name="SnowflakesLayer") ] augmenters = (augmenters_meta + augmenters_arithmetic + augmenters_blend + augmenters_blur + augmenters_color + augmenters_contrast + augmenters_convolutional + augmenters_edges + augmenters_flip + augmenters_geometric + augmenters_pooling + augmenters_segmentation + augmenters_size + augmenters_weather) if only_augmenters is not None: augmenters_reduced = [] for augmenter in augmenters: if any([ re.search(pattern, augmenter.name) for pattern in only_augmenters ]): augmenters_reduced.append(augmenter) augmenters = augmenters_reduced return augmenters
def augmentation_of_image(self, test_image, output_path): self.test_image = test_image self.output_path = output_path #define the Augmenters #properties: A range of values signifies that one of these numbers is randmoly chosen for every augmentation for every batch # Apply affine transformations to each image. rotate = iaa.Affine(rotate=(-90, 90)) scale = iaa.Affine(scale={ "x": (0.5, 0.9), "y": (0.5, 0.9) }) translation = iaa.Affine(translate_percent={ "x": (-0.15, 0.15), "y": (-0.15, 0.15) }) shear = iaa.Affine(shear=(-2, 2)) #plagio parallhlogrammo wihthin a range (-8,8) zoom = iaa.PerspectiveTransform( scale=(0.01, 0.15), keep_size=True) # do not change the output size of the image h_flip = iaa.Fliplr(1.0) # flip horizontally all images (100%) v_flip = iaa.Flipud(1.0) #flip vertically all images padding = iaa.KeepSizeByResize( iaa.CropAndPad(percent=(0.05, 0.25)) ) #positive values correspond to padding 5%-25% of the image,but keeping the origial output size of the new image #More augmentations blur = iaa.GaussianBlur( sigma=(0, 1.22) ) # blur images with a sigma 0-2,a number ofthis range is randomly chosen everytime.Low values suggested for this application contrast = iaa.contrast.LinearContrast((0.75, 1.5)) #change the contrast by a factor of 0.75 and 1.5 sampled randomly per image contrast_channels = iaa.LinearContrast( (0.75, 1.5), per_channel=True ) #and for 50% of all images also independently per channel: sharpen = iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)) #sharpen with an alpha from 0(no sharpening) - 1(full sharpening) and change the lightness form 0.75 to 1.5 gauss_noise = iaa.AdditiveGaussianNoise( scale=0.111 * 255, per_channel=True ) #some random gaussian noise might occur in cell images,especially when image quality is poor laplace_noise = iaa.AdditiveLaplaceNoise( scale=(0, 0.111 * 255) ) #we choose to be in a small range, as it is logical for training the cell images #Brightness brightness = iaa.Multiply( (0.35, 1.65 )) #change brightness between 35% or 165% of the original image brightness_channels = iaa.Multiply( (0.5, 1.5), per_channel=0.75 ) # change birghtness for 25% of images.For the remaining 75%, change it, but also channel-wise. #CHANNELS (RGB)=(Red,Green,Blue) red = iaa.WithChannels(0, iaa.Add( (10, 100))) #increase each Red-pixels value within the range 10-100 red_rot = iaa.WithChannels(0, iaa.Affine( rotate=(0, 45))) #rotate each image's red channel by 0-45 degrees green = iaa.WithChannels(1, iaa.Add( (10, 100))) #increase each Green-pixels value within the range 10-100 green_rot = iaa.WithChannels(1, iaa.Affine( rotate=(0, 45))) #rotate each image's green channel by 0-45 degrees blue = iaa.WithChannels(2, iaa.Add( (10, 100))) #increase each Blue-pixels value within the range 10-100 blue_rot = iaa.WithChannels(2, iaa.Affine( rotate=(0, 45))) #rotate each image's blue channel by 0-45 degrees #colors channel_shuffle = iaa.ChannelShuffle(1.0) #shuffle all images of the batch grayscale = iaa.Grayscale(1.0) hue_n_saturation = iaa.MultiplyHueAndSaturation( (0.5, 1.5), per_channel=True ) #change hue and saturation with this range of values for different values add_hue_saturation = iaa.AddToHueAndSaturation( (-50, 50), per_channel=True) #add more hue and saturation to its pixels #Quantize colors using k-Means clustering kmeans_color = iaa.KMeansColorQuantization( n_colors=(4, 16) ) #quantizes to k means 4 to 16 colors (randomly chosen). Quantizes colors up to 16 colors #Alpha Blending blend = iaa.AlphaElementwise((0, 1.0), iaa.Grayscale((0, 1.0))) #blend depending on which value is greater #Contrast augmentors clahe = iaa.CLAHE(tile_grid_size_px=((3, 21), [ 0, 2, 3, 4, 5, 6, 7 ])) #create a clahe contrast augmentor H=(3,21) and W=(0,7) histogram = iaa.HistogramEqualization( ) #performs histogram equalization #Augmentation list of metadata augmentors OneofRed = iaa.OneOf([red]) OneofGreen = iaa.OneOf([green]) OneofBlue = iaa.OneOf([blue]) contrast_n_shit = iaa.OneOf( [contrast, brightness, brightness_channels]) SomeAug = iaa.SomeOf( 2, [rotate, scale, translation, shear, h_flip, v_flip], random_order=True) SomeClahe = iaa.SomeOf( 2, [ clahe, iaa.CLAHE(clip_limit=(1, 10)), iaa.CLAHE(tile_grid_size_px=(3, 21)), iaa.GammaContrast((0.5, 2.0)), iaa.AllChannelsCLAHE(), iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True) ], random_order=True) #Random selection from clahe augmentors edgedetection = iaa.OneOf([ iaa.EdgeDetect(alpha=(0, 0.7)), iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)) ]) # Search in some images either for all edges or for directed edges.These edges are then marked in a black and white image and overlayed with the original image using an alpha of 0 to 0.7. canny_filter = iaa.OneOf([ iaa.Canny(), iaa.Canny(alpha=(0.5, 1.0), sobel_kernel_size=[3, 7]) ]) #choose one of the 2 canny filter options OneofNoise = iaa.OneOf([blur, gauss_noise, laplace_noise]) Color_1 = iaa.OneOf([ channel_shuffle, grayscale, hue_n_saturation, add_hue_saturation, kmeans_color ]) Color_2 = iaa.OneOf([ channel_shuffle, grayscale, hue_n_saturation, add_hue_saturation, kmeans_color ]) Flip = iaa.OneOf([histogram, v_flip, h_flip]) #Define the augmentors used in the DA Augmentors = [ SomeAug, SomeClahe, SomeClahe, edgedetection, sharpen, canny_filter, OneofRed, OneofGreen, OneofBlue, OneofNoise, Color_1, Color_2, Flip, contrast_n_shit ] for i in range(0, 14): img = cv2.imread(test_image) #read you image images = np.array( [img for _ in range(14)], dtype=np.uint8 ) # 12 is the size of the array that will hold 8 different images images_aug = Augmentors[i].augment_images( images ) #alternate between the different augmentors for a test image cv2.imwrite( os.path.join(output_path, test_image + "new" + str(i) + '.jpg'), images_aug[i]) #write all changed images
iaa.ContrastNormalization((0.9, 1.1)), # Add gaussian noise. # For 50% of all images, we sample the noise once per pixel. # For the other 50% of all images, we sample the noise per pixel AND # channel. This can change the color (not only brightness) of the # pixels. iaa.AdditiveGaussianNoise( loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5), # Make some images brighter and some darker. # In 20% of all cases, we sample the multiplier once per channel, # which can end up changing the color of the images. iaa.Multiply((0.9, 1.1), per_channel=0.2), # Apply affine transformations to each image. # Scale/zoom them, translate/move them, rotate them and shear them. iaa.KeepSizeByResize( iaa.Affine(scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) }, rotate=(-10, 10), shear=(-8, 8), mode="symmetric")) #translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, ], random_order=True) # apply augmenters in random order for j in range(4): images_aug = seq.augment_images(imgs) for i in range(images_aug.shape[0]): imageio.imwrite('G:\\final_dataset\\paper\\{}_{}.png'.format(j, i), images_aug[i])
seq_1 = iaa.Sequential( [ # apply only 2 of the following iaa.SomeOf(3, [ sometimes(iaa.Fliplr(0.99)), sometimes(iaa.Flipud(0.99)), sometimes(iaa.Affine(scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, order=1, backend="cv2")), sometimes(iaa.Affine(translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, order=1, backend="cv2")), sometimes(iaa.Affine(rotate=(-90, 90), order=1, backend="cv2")), sometimes(iaa.Affine(shear=(-25, 25), order=1, backend="cv2")), sometimes(iaa.ElasticTransformation(alpha=50.0, sigma=5.0)), # radomly crop some part of image to add more BG class in data sometimes(iaa.CropToFixedSize(width=512, height=512, position='uniform')), iaa.OneOf([ sometimes(iaa.KeepSizeByResize( iaa.Crop(percent=(0.05, 0.25), keep_size=False), interpolation='linear')), sometimes(iaa.KeepSizeByResize( iaa.CropAndPad(percent=(0.05, 0.25), pad_mode=["constant", "edge"], pad_cval=(0, 255)), interpolation="linear")) ]), ], random_order=True), ], random_order=True) ''' Noisy Data Aug''' seq_2 = iaa.Sequential( [ iaa.OneOf( [ # Blur each image using a median over neihbourhoods that have a random size between 3x3 and 7x7 sometimes(iaa.MedianBlur(k=(3, 7))), # blur images using gaussian kernels with random value (sigma) from the interval [a, b]
# iaa.Crop(px=(0, 70)), # iaa.Affine(rotate=(-25, 25)), # iaa.Affine(translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}) # ],random_order=True), ], random_order=True) ''' SSD Upscale Crop''' # randomly choose positions in image positions = ['center','left-top', 'left-center', 'left-bottom', 'center-top', 'center-bottom', 'right-top', 'right-center', 'right-bottom'] SSD = iaa.Sequential([ iaa.KeepSizeByResize(iaa.CropToFixedSize(width=470, height=370, position=positions[0]), interpolation="linear") ], random_order=True) #% #for i in range(10): image_aug, bbs_aug = SSD.augment(image=img, bounding_boxes=bbs) # disregard bounding boxes which have fallen out of image pane bbs_aug = bbs_aug.remove_out_of_image() # clip bounding boxes which are partially outside of image pane bbs_aug = bbs_aug.clip_out_of_image() #ia.imshow(bbs_aug.draw_on_image(image_aug, size=5)) ''' Now updata the dictionary wiht new augmented values