예제 #1
0
    def test_keypoints_p_is_0(self):
        aug = self.create_aug(0)

        for _ in sm.xrange(3):
            observed = aug.augment_keypoints(self.kpsoi)
            expected = self.kpsoi
            assert keypoints_equal(observed, expected)
예제 #2
0
    def test_keypoints_p_is_1__deterministic(self):
        aug = self.create_aug(1.0).to_deterministic()

        for _ in sm.xrange(3):
            observed = aug.augment_keypoints(self.kpsoi)
            expected = self.kpsoi_flipped
            assert keypoints_equal(observed, expected)
예제 #3
0
    def test_keypoints_p_is_050__deterministic(self):
        aug = self.create_aug(0.5).to_deterministic()

        nb_iterations = 10
        nb_keypoints_flipped_det = 0
        for _ in sm.xrange(nb_iterations):
            observed = aug.augment_keypoints(self.kpsoi)
            if keypoints_equal(observed, self.kpsoi_flipped):
                nb_keypoints_flipped_det += 1

        assert nb_keypoints_flipped_det in [0, nb_iterations]
예제 #4
0
    def test_keypoints_p_is_050(self):
        aug = self.create_aug(0.5)

        nb_iterations = 1000
        nb_keypoints_flipped = 0
        for _ in sm.xrange(nb_iterations):
            observed = aug.augment_keypoints(self.kpsoi)
            if keypoints_equal(observed, self.kpsoi_flipped):
                nb_keypoints_flipped += 1

        assert np.isclose(nb_keypoints_flipped / nb_iterations,
                          0.5,
                          rtol=0,
                          atol=0.1)
예제 #5
0
def test_SigmoidContrast():
    reseed()

    img = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    img = np.uint8(img)
    img3d = np.tile(img[:, :, np.newaxis], (1, 1, 3))

    # check basic functionality with per_chanenl on/off (makes no difference due to deterministic
    # parameters)
    for per_channel in [False, 0, 0.0, True, 1, 1.0]:
        for gain, cutoff in itertools.product([5, 10], [0.25, 0.75]):
            aug = iaa.SigmoidContrast(gain=iap.Deterministic(gain),
                                      cutoff=iap.Deterministic(cutoff),
                                      per_channel=per_channel)
            img_aug = aug.augment_image(img)
            img3d_aug = aug.augment_image(img3d)
            assert img_aug.dtype.type == np.uint8
            assert img3d_aug.dtype.type == np.uint8
            assert np.array_equal(
                img_aug,
                skimage.exposure.adjust_sigmoid(img, gain=gain, cutoff=cutoff))
            assert np.array_equal(
                img3d_aug,
                skimage.exposure.adjust_sigmoid(img3d,
                                                gain=gain,
                                                cutoff=cutoff))

    # check that tuple to uniform works
    # note that gain and cutoff are saved in inverted order in _ContrastFuncWrapper to match
    # the order of skimage's function
    aug = iaa.SigmoidContrast(gain=(1, 2), cutoff=(0.25, 0.75))
    assert isinstance(aug.params1d[0], iap.Uniform)
    assert isinstance(aug.params1d[0].a, iap.Deterministic)
    assert isinstance(aug.params1d[0].b, iap.Deterministic)
    assert np.allclose(aug.params1d[0].a.value, 0.25)
    assert np.allclose(aug.params1d[0].b.value, 0.75)
    assert isinstance(aug.params1d[1], iap.Uniform)
    assert isinstance(aug.params1d[1].a, iap.Deterministic)
    assert isinstance(aug.params1d[1].b, iap.Deterministic)
    assert aug.params1d[1].a.value == 1
    assert aug.params1d[1].b.value == 2

    # check that list to choice works
    # note that gain and cutoff are saved in inverted order in _ContrastFuncWrapper to match
    # the order of skimage's function
    aug = iaa.SigmoidContrast(gain=[1, 2], cutoff=[0.25, 0.75])
    assert isinstance(aug.params1d[0], iap.Choice)
    assert all([
        np.allclose(val, val_choice)
        for val, val_choice in zip([0.25, 0.75], aug.params1d[0].a)
    ])
    assert isinstance(aug.params1d[1], iap.Choice)
    assert all([val in aug.params1d[1].a for val in [1, 2]])

    # check that per_channel at 50% prob works
    aug = iaa.SigmoidContrast(gain=(1, 10),
                              cutoff=(0.25, 0.75),
                              per_channel=0.5)
    seen = [False, False]
    img1000d = np.zeros((1, 1, 1000), dtype=np.uint8) + 128
    for _ in sm.xrange(100):
        img_aug = aug.augment_image(img1000d)
        assert img_aug.dtype.type == np.uint8
        l = len(set(img_aug.flatten().tolist()))
        if l == 1:
            seen[0] = True
        else:
            seen[1] = True
        if all(seen):
            break
    assert all(seen)

    # check that keypoints are not changed
    kpsoi = ia.KeypointsOnImage([ia.Keypoint(1, 1)], shape=(3, 3, 3))
    kpsoi_aug = iaa.SigmoidContrast(gain=10,
                                    cutoff=0.5).augment_keypoints([kpsoi])
    assert keypoints_equal([kpsoi], kpsoi_aug)

    # check that heatmaps are not changed
    heatmaps = ia.HeatmapsOnImage(np.zeros((3, 3, 1), dtype=np.float32) + 0.5,
                                  shape=(3, 3, 3))
    heatmaps_aug = iaa.SigmoidContrast(gain=10,
                                       cutoff=0.5).augment_heatmaps([heatmaps
                                                                     ])[0]
    assert np.allclose(heatmaps.arr_0to1, heatmaps_aug.arr_0to1)

    ###################
    # test other dtypes
    ###################
    # uint, int
    for dtype in [
            np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16,
            np.int32, np.int64
    ]:
        min_value, center_value, max_value = meta.get_value_range_of_dtype(
            dtype)

        gains = [5, 20]
        cutoffs = [0.25, 0.75]
        values = [0, 100, int(center_value + 0.1 * max_value)]
        tmax = 1e-8 * max_value if dtype in [np.uint64, np.int64] else 0
        tolerances = [tmax, tmax, tmax]

        for gain, cutoff in itertools.product(gains, cutoffs):
            aug = iaa.SigmoidContrast(gain=gain, cutoff=cutoff)
            for value, tolerance in zip(values, tolerances):
                image = np.full((3, 3), value, dtype=dtype)
                # 1/(1 + exp(gain*(cutoff - I_ij/max)))
                expected = (1 / (1 + np.exp(
                    gain * (cutoff - image.astype(np.float128) / max_value))))
                expected = (expected * max_value).astype(dtype)
                image_aug = aug.augment_image(image)
                assert image_aug.dtype == np.dtype(dtype)
                assert len(np.unique(image_aug)) == 1
                value_aug = int(image_aug[0, 0])
                value_expected = int(expected[0, 0])
                diff = abs(value_aug - value_expected)
                assert diff <= tolerance

    # float
    for dtype in [np.float16, np.float32, np.float64]:

        def _allclose(a, b):
            atol = 1e-3 if dtype == np.float16 else 1e-8
            return np.allclose(a, b, atol=atol, rtol=0)

        gains = [5, 20]
        cutoffs = [0.25, 0.75]
        isize = np.dtype(dtype).itemsize
        values = [0, 1.0, 50.0, 100**(isize - 1)]

        for gain, cutoff in itertools.product(gains, cutoffs):
            aug = iaa.SigmoidContrast(gain=gain, cutoff=cutoff)
            for value in values:
                image = np.full((3, 3), value, dtype=dtype)
                expected = (1 /
                            (1 + np.exp(gain *
                                        (cutoff - image.astype(np.float128))))
                            ).astype(dtype)
                image_aug = aug.augment_image(image)
                assert image_aug.dtype == np.dtype(dtype)
                assert _allclose(image_aug, expected)
예제 #6
0
def test_GammaContrast():
    reseed()

    img = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    img = np.uint8(img)
    img3d = np.tile(img[:, :, np.newaxis], (1, 1, 3))

    # check basic functionality with gamma=1 or 2 (deterministic) and per_chanenl on/off (makes
    # no difference due to deterministic gamma)
    for per_channel in [False, 0, 0.0, True, 1, 1.0]:
        for gamma in [1, 2]:
            aug = iaa.GammaContrast(gamma=iap.Deterministic(gamma),
                                    per_channel=per_channel)
            img_aug = aug.augment_image(img)
            img3d_aug = aug.augment_image(img3d)
            assert img_aug.dtype.type == np.uint8
            assert img3d_aug.dtype.type == np.uint8
            assert np.array_equal(
                img_aug, skimage.exposure.adjust_gamma(img, gamma=gamma))
            assert np.array_equal(
                img3d_aug, skimage.exposure.adjust_gamma(img3d, gamma=gamma))

    # check that tuple to uniform works
    aug = iaa.GammaContrast((1, 2))
    assert isinstance(aug.params1d[0], iap.Uniform)
    assert isinstance(aug.params1d[0].a, iap.Deterministic)
    assert isinstance(aug.params1d[0].b, iap.Deterministic)
    assert aug.params1d[0].a.value == 1
    assert aug.params1d[0].b.value == 2

    # check that list to choice works
    aug = iaa.GammaContrast([1, 2])
    assert isinstance(aug.params1d[0], iap.Choice)
    assert all([val in aug.params1d[0].a for val in [1, 2]])

    # check that per_channel at 50% prob works
    aug = iaa.GammaContrast((0.5, 2.0), per_channel=0.5)
    seen = [False, False]
    img1000d = np.zeros((1, 1, 1000), dtype=np.uint8) + 128
    for _ in sm.xrange(100):
        img_aug = aug.augment_image(img1000d)
        assert img_aug.dtype.type == np.uint8
        l = len(set(img_aug.flatten().tolist()))
        if l == 1:
            seen[0] = True
        else:
            seen[1] = True
        if all(seen):
            break
    assert all(seen)

    # check that keypoints are not changed
    kpsoi = ia.KeypointsOnImage([ia.Keypoint(1, 1)], shape=(3, 3, 3))
    kpsoi_aug = iaa.GammaContrast(gamma=2).augment_keypoints([kpsoi])
    assert keypoints_equal([kpsoi], kpsoi_aug)

    # check that heatmaps are not changed
    heatmaps = ia.HeatmapsOnImage(np.zeros((3, 3, 1), dtype=np.float32) + 0.5,
                                  shape=(3, 3, 3))
    heatmaps_aug = iaa.GammaContrast(gamma=2).augment_heatmaps([heatmaps])[0]
    assert np.allclose(heatmaps.arr_0to1, heatmaps_aug.arr_0to1)

    ###################
    # test other dtypes
    ###################
    # uint, int
    for dtype in [
            np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16,
            np.int32, np.int64
    ]:
        min_value, center_value, max_value = meta.get_value_range_of_dtype(
            dtype)

        exps = [1, 2, 3]
        values = [0, 100, int(center_value + 0.1 * max_value)]
        tolerances = [
            0, 0, 1e-8 * max_value if dtype in [np.uint64, np.int64] else 0
        ]

        for exp in exps:
            aug = iaa.GammaContrast(exp)
            for value, tolerance in zip(values, tolerances):
                image = np.full((3, 3), value, dtype=dtype)
                expected = (((image.astype(np.float128) / max_value)**exp) *
                            max_value).astype(dtype)
                image_aug = aug.augment_image(image)
                assert image_aug.dtype == np.dtype(dtype)
                assert len(np.unique(image_aug)) == 1
                value_aug = int(image_aug[0, 0])
                value_expected = int(expected[0, 0])
                diff = abs(value_aug - value_expected)
                assert diff <= tolerance

    # float
    for dtype in [np.float16, np.float32, np.float64]:

        def _allclose(a, b):
            atol = 1e-3 if dtype == np.float16 else 1e-8
            return np.allclose(a, b, atol=atol, rtol=0)

        exps = [1, 2]
        isize = np.dtype(dtype).itemsize
        values = [0, 1.0, 50.0, 100**(isize - 1)]

        for exp in exps:
            aug = iaa.GammaContrast(exp)
            for value in values:
                image = np.full((3, 3), value, dtype=dtype)
                expected = (image.astype(np.float128)**exp).astype(dtype)
                image_aug = aug.augment_image(image)
                assert image_aug.dtype == np.dtype(dtype)
                assert _allclose(image_aug, expected)
예제 #7
0
def test_Alpha():
    reseed()

    base_img = np.zeros((3, 3, 1), dtype=np.uint8)
    heatmaps_arr = np.float32([[0.0, 0.0, 1.0],
                               [0.0, 0.0, 1.0],
                               [0.0, 1.0, 1.0]])
    heatmaps_arr_r1 = np.float32([[0.0, 0.0, 0.0],
                                  [0.0, 0.0, 0.0],
                                  [0.0, 0.0, 1.0]])
    heatmaps_arr_l1 = np.float32([[0.0, 1.0, 0.0],
                                  [0.0, 1.0, 0.0],
                                  [1.0, 1.0, 0.0]])
    heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(3, 3, 3))

    aug = iaa.Alpha(1, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = np.round(base_img + 10).astype(np.uint8)
    assert np.allclose(observed, expected)

    for per_channel in [False, True]:
        aug = iaa.Alpha(1, iaa.Affine(translate_px={"x": 1}), iaa.Affine(translate_px={"x": -1}),
                        per_channel=per_channel)
        observed = aug.augment_heatmaps([heatmaps])[0]
        assert observed.shape == heatmaps.shape
        assert 0 - 1e-6 < heatmaps.min_value < 0 + 1e-6
        assert 1 - 1e-6 < heatmaps.max_value < 1 + 1e-6
        assert np.allclose(observed.get_arr(), heatmaps_arr_r1)

    aug = iaa.Alpha(0, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = np.round(base_img + 20).astype(np.uint8)
    assert np.allclose(observed, expected)

    for per_channel in [False, True]:
        aug = iaa.Alpha(0, iaa.Affine(translate_px={"x": 1}), iaa.Affine(translate_px={"x": -1}),
                        per_channel=per_channel)
        observed = aug.augment_heatmaps([heatmaps])[0]
        assert observed.shape == heatmaps.shape
        assert 0 - 1e-6 < heatmaps.min_value < 0 + 1e-6
        assert 1 - 1e-6 < heatmaps.max_value < 1 + 1e-6
        assert np.allclose(observed.get_arr(), heatmaps_arr_l1)

    aug = iaa.Alpha(0.75, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = np.round(base_img + 0.75 * 10 + 0.25 * 20).astype(np.uint8)
    assert np.allclose(observed, expected)

    aug = iaa.Alpha(0.75, None, iaa.Add(20))
    observed = aug.augment_image(base_img + 10)
    expected = np.round(base_img + 0.75 * 10 + 0.25 * (10 + 20)).astype(np.uint8)
    assert np.allclose(observed, expected)

    aug = iaa.Alpha(0.75, iaa.Add(10), None)
    observed = aug.augment_image(base_img + 10)
    expected = np.round(base_img + 0.75 * (10 + 10) + 0.25 * 10).astype(np.uint8)
    assert np.allclose(observed, expected)

    base_img = np.zeros((1, 2, 1), dtype=np.uint8)
    nb_iterations = 1000
    aug = iaa.Alpha((0.0, 1.0), iaa.Add(10), iaa.Add(110))
    values = []
    for _ in sm.xrange(nb_iterations):
        observed = aug.augment_image(base_img)
        observed_val = np.round(np.average(observed)) - 10
        values.append(observed_val / 100)

    nb_bins = 5
    hist, _ = np.histogram(values, bins=nb_bins, range=(0.0, 1.0), density=False)
    density_expected = 1.0/nb_bins
    density_tolerance = 0.05
    for nb_samples in hist:
        density = nb_samples / nb_iterations
        assert density_expected - density_tolerance < density < density_expected + density_tolerance

    # bad datatype for factor
    got_exception = False
    try:
        _ = iaa.Alpha(False, iaa.Add(10), None)
    except Exception as exc:
        assert "Expected " in str(exc)
        got_exception = True
    assert got_exception

    # per_channel
    aug = iaa.Alpha(1.0, iaa.Add((0, 100), per_channel=True), None, per_channel=True)
    observed = aug.augment_image(np.zeros((1, 1, 1000), dtype=np.uint8))
    uq = np.unique(observed)
    assert len(uq) > 1
    assert np.max(observed) > 80
    assert np.min(observed) < 20

    aug = iaa.Alpha((0.0, 1.0), iaa.Add(100), None, per_channel=True)
    observed = aug.augment_image(np.zeros((1, 1, 1000), dtype=np.uint8))
    uq = np.unique(observed)
    assert len(uq) > 1
    assert np.max(observed) > 80
    assert np.min(observed) < 20

    aug = iaa.Alpha((0.0, 1.0), iaa.Add(100), iaa.Add(0), per_channel=0.5)
    seen = [0, 0]
    for _ in sm.xrange(200):
        observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8))
        uq = np.unique(observed)
        if len(uq) == 1:
            seen[0] += 1
        elif len(uq) > 1:
            seen[1] += 1
        else:
            assert False
    assert 100 - 50 < seen[0] < 100 + 50
    assert 100 - 50 < seen[1] < 100 + 50

    # bad datatype for per_channel
    got_exception = False
    try:
        _ = iaa.Alpha(0.5, iaa.Add(10), None, per_channel="test")
    except Exception as exc:
        assert "Expected " in str(exc)
        got_exception = True
    assert got_exception

    # propagating
    aug = iaa.Alpha(0.5, iaa.Add(100), iaa.Add(50), name="AlphaTest")

    def propagator(images, augmenter, parents, default):
        if "Alpha" in augmenter.name:
            return False
        else:
            return default

    hooks = ia.HooksImages(propagator=propagator)
    image = np.zeros((10, 10, 3), dtype=np.uint8) + 1
    observed = aug.augment_image(image, hooks=hooks)
    assert np.array_equal(observed, image)

    # -----
    # keypoints
    # -----
    kps = [ia.Keypoint(x=5, y=10), ia.Keypoint(x=6, y=11)]
    kpsoi = ia.KeypointsOnImage(kps, shape=(20, 20, 3))

    aug = iaa.Alpha(1.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.Alpha(0.501, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.Alpha(0.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    aug = iaa.Alpha(0.499, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    # per_channel
    aug = iaa.Alpha(1.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.Alpha(0.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    aug = iaa.Alpha(iap.Choice([0.49, 0.51]), iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    expected_same = kpsoi.deepcopy()
    expected_shifted = kpsoi.shift(x=1)
    seen = [0, 0]
    for _ in sm.xrange(200):
        observed = aug.augment_keypoints([kpsoi])[0]
        if keypoints_equal([observed], [expected_same]):
            seen[0] += 1
        elif keypoints_equal([observed], [expected_shifted]):
            seen[1] += 1
        else:
            assert False
    assert 100 - 50 < seen[0] < 100 + 50
    assert 100 - 50 < seen[1] < 100 + 50

    # empty keypoints
    aug = iaa.Alpha(0.501, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints(ia.KeypointsOnImage([], shape=(1, 2, 3)))
    assert len(observed.keypoints) == 0
    assert observed.shape == (1, 2, 3)

    # propagating
    aug = iaa.Alpha(0.0, iaa.Affine(translate_px={"x": 1}), iaa.Affine(translate_px={"y": 1}), name="AlphaTest")

    def propagator(kpsoi_to_aug, augmenter, parents, default):
        if "Alpha" in augmenter.name:
            return False
        else:
            return default

    hooks = ia.HooksKeypoints(propagator=propagator)
    observed = aug.augment_keypoints([kpsoi], hooks=hooks)[0]
    assert keypoints_equal([observed], [kpsoi])

    # -----
    # polygons
    # -----
    ps = [ia.Polygon([(5, 5), (10, 5), (10, 10)])]
    psoi = ia.PolygonsOnImage(ps, shape=(20, 20, 3))

    aug = iaa.Alpha(1.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_polygons([psoi])
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(psoi.polygons[0])
    assert observed[0].polygons[0].is_valid

    aug = iaa.Alpha(0.501, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_polygons([psoi])
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(psoi.polygons[0])
    assert observed[0].polygons[0].is_valid

    aug = iaa.Alpha(0.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_polygons([psoi])
    expected = psoi.shift(left=1)
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(expected.polygons[0])
    assert observed[0].polygons[0].is_valid

    aug = iaa.Alpha(0.499, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_polygons([psoi])
    expected = psoi.shift(left=1)
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(expected.polygons[0])
    assert observed[0].polygons[0].is_valid

    # per_channel
    aug = iaa.Alpha(1.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    observed = aug.augment_polygons([psoi])
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(psoi.polygons[0])
    assert observed[0].polygons[0].is_valid

    aug = iaa.Alpha(0.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    observed = aug.augment_polygons([psoi])
    expected = psoi.shift(left=1)
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(expected.polygons[0])
    assert observed[0].polygons[0].is_valid

    aug = iaa.Alpha(iap.Choice([0.49, 0.51]), iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    expected_same = psoi.deepcopy()
    expected_shifted = psoi.shift(left=1)
    seen = [0, 0]
    for _ in sm.xrange(200):
        observed = aug.augment_polygons([psoi])[0]
        if observed.polygons[0].exterior_almost_equals(expected_same.polygons[0]):
            seen[0] += 1
        elif observed.polygons[0].exterior_almost_equals(expected_shifted.polygons[0]):
            seen[1] += 1
        else:
            assert False
    assert 100 - 50 < seen[0] < 100 + 50
    assert 100 - 50 < seen[1] < 100 + 50

    # empty polygons
    aug = iaa.Alpha(0.501, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_polygons(ia.PolygonsOnImage([], shape=(1, 2, 3)))
    assert len(observed.polygons) == 0
    assert observed.shape == (1, 2, 3)

    # propagating
    aug = iaa.Alpha(0.0, iaa.Affine(translate_px={"x": 1}), iaa.Affine(translate_px={"y": 1}), name="AlphaTest")

    def propagator(psoi_to_aug, augmenter, parents, default):
        if "Alpha" in augmenter.name:
            return False
        else:
            return default

    hooks = ia.HooksKeypoints(propagator=propagator)  # no hooks for polygons yet, so we use HooksKeypoints
    observed = aug.augment_polygons([psoi], hooks=hooks)[0]
    assert observed.polygons[0].exterior_almost_equals(psoi.polygons[0])

    # -----
    # get_parameters()
    # -----
    first = iaa.Noop()
    second = iaa.Sequential([iaa.Add(1)])
    aug = iaa.Alpha(0.65, first, second, per_channel=1)
    params = aug.get_parameters()
    assert isinstance(params[0], iap.Deterministic)
    assert isinstance(params[1], iap.Deterministic)
    assert 0.65 - 1e-6 < params[0].value < 0.65 + 1e-6
    assert params[1].value == 1

    # -----
    # get_children_lists()
    # -----
    first = iaa.Noop()
    second = iaa.Sequential([iaa.Add(1)])
    aug = iaa.Alpha(0.65, first, second, per_channel=1)
    children_lsts = aug.get_children_lists()
    assert len(children_lsts) == 2
    assert ia.is_iterable([lst for lst in children_lsts])
    assert first in children_lsts[0]
    assert second == children_lsts[1]
예제 #8
0
def test_AlphaElementwise():
    reseed()

    base_img = np.zeros((3, 3, 1), dtype=np.uint8)
    heatmaps_arr = np.float32([[0.0, 0.0, 1.0],
                               [0.0, 0.0, 1.0],
                               [0.0, 1.0, 1.0]])
    heatmaps_arr_r1 = np.float32([[0.0, 0.0, 0.0],
                                  [0.0, 0.0, 0.0],
                                  [0.0, 0.0, 1.0]])
    heatmaps_arr_l1 = np.float32([[0.0, 1.0, 0.0],
                                  [0.0, 1.0, 0.0],
                                  [1.0, 1.0, 0.0]])
    heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(3, 3, 3))

    aug = iaa.AlphaElementwise(1, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = base_img + 10
    assert np.allclose(observed, expected)

    aug = iaa.AlphaElementwise(1, iaa.Affine(translate_px={"x": 1}), iaa.Affine(translate_px={"x": -1}))
    observed = aug.augment_heatmaps([heatmaps])[0]
    assert observed.shape == (3, 3, 3)
    assert 0 - 1e-6 < observed.min_value < 0 + 1e-6
    assert 1 - 1e-6 < observed.max_value < 1 + 1e-6
    assert np.allclose(observed.get_arr(), heatmaps_arr_r1)

    aug = iaa.AlphaElementwise(0, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = base_img + 20
    assert np.allclose(observed, expected)

    aug = iaa.AlphaElementwise(0, iaa.Affine(translate_px={"x": 1}), iaa.Affine(translate_px={"x": -1}))
    observed = aug.augment_heatmaps([heatmaps])[0]
    assert observed.shape == (3, 3, 3)
    assert 0 - 1e-6 < observed.min_value < 0 + 1e-6
    assert 1 - 1e-6 < observed.max_value < 1 + 1e-6
    assert np.allclose(observed.get_arr(), heatmaps_arr_l1)

    aug = iaa.AlphaElementwise(0.75, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = np.round(base_img + 0.75 * 10 + 0.25 * 20).astype(np.uint8)
    assert np.allclose(observed, expected)

    aug = iaa.AlphaElementwise(0.75, None, iaa.Add(20))
    observed = aug.augment_image(base_img + 10)
    expected = np.round(base_img + 0.75 * 10 + 0.25 * (10 + 20)).astype(np.uint8)
    assert np.allclose(observed, expected)

    aug = iaa.AlphaElementwise(0.75, iaa.Add(10), None)
    observed = aug.augment_image(base_img + 10)
    expected = np.round(base_img + 0.75 * (10 + 10) + 0.25 * 10).astype(np.uint8)
    assert np.allclose(observed, expected)

    base_img = np.zeros((100, 100), dtype=np.uint8)
    aug = iaa.AlphaElementwise((0.0, 1.0), iaa.Add(10), iaa.Add(110))
    observed = (aug.augment_image(base_img) - 10) / 100
    nb_bins = 10
    hist, _ = np.histogram(observed.flatten(),  bins=nb_bins, range=(0.0, 1.0), density=False)
    density_expected = 1.0/nb_bins
    density_tolerance = 0.05
    for nb_samples in hist:
        density = nb_samples / observed.size
        assert density_expected - density_tolerance < density < density_expected + density_tolerance

    base_img = np.zeros((1, 1, 100), dtype=np.uint8)
    aug = iaa.AlphaElementwise((0.0, 1.0), iaa.Add(10), iaa.Add(110), per_channel=True)
    observed = aug.augment_image(base_img)
    assert len(set(observed.flatten())) > 1

    # propagating
    aug = iaa.AlphaElementwise(0.5, iaa.Add(100), iaa.Add(50), name="AlphaElementwiseTest")

    def propagator(images, augmenter, parents, default):
        if "AlphaElementwise" in augmenter.name:
            return False
        else:
            return default

    hooks = ia.HooksImages(propagator=propagator)
    image = np.zeros((10, 10, 3), dtype=np.uint8) + 1
    observed = aug.augment_image(image, hooks=hooks)
    assert np.array_equal(observed, image)

    # -----
    # heatmaps and per_channel
    # -----
    class _DummyMaskParameter(iap.StochasticParameter):
        def __init__(self, inverted=False):
            super(_DummyMaskParameter, self).__init__()
            self.nb_calls = 0
            self.inverted = inverted

        def _draw_samples(self, size, random_state):
            self.nb_calls += 1
            h, w = size
            ones = np.ones((h, w), dtype=np.float32)
            zeros = np.zeros((h, w), dtype=np.float32)
            if self.nb_calls == 1:
                return zeros if not self.inverted else ones
            elif self.nb_calls in [2, 3]:
                return ones if not self.inverted else zeros
            else:
                assert False

    aug = iaa.AlphaElementwise(
        _DummyMaskParameter(inverted=False),
        iaa.Affine(translate_px={"x": 1}),
        iaa.Affine(translate_px={"x": -1}),
        per_channel=True
    )
    observed = aug.augment_heatmaps([heatmaps])[0]
    assert observed.shape == (3, 3, 3)
    assert 0 - 1e-6 < observed.min_value < 0 + 1e-6
    assert 1 - 1e-6 < observed.max_value < 1 + 1e-6
    assert np.allclose(observed.get_arr(), heatmaps_arr_r1)

    aug = iaa.AlphaElementwise(
        _DummyMaskParameter(inverted=True),
        iaa.Affine(translate_px={"x": 1}),
        iaa.Affine(translate_px={"x": -1}),
        per_channel=True
    )
    observed = aug.augment_heatmaps([heatmaps])[0]
    assert observed.shape == (3, 3, 3)
    assert 0 - 1e-6 < observed.min_value < 0 + 1e-6
    assert 1 - 1e-6 < observed.max_value < 1 + 1e-6
    assert np.allclose(observed.get_arr(), heatmaps_arr_l1)

    # -----
    # keypoints
    # -----
    kps = [ia.Keypoint(x=5, y=10), ia.Keypoint(x=6, y=11)]
    kpsoi = ia.KeypointsOnImage(kps, shape=(20, 20, 3))

    aug = iaa.AlphaElementwise(1.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.AlphaElementwise(0.501, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.AlphaElementwise(0.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    aug = iaa.AlphaElementwise(0.499, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    # per_channel
    aug = iaa.AlphaElementwise(1.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.AlphaElementwise(0.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    """
    TODO this test currently doesn't work as AlphaElementwise augments keypoints without sampling
    overlay factors per (x, y) location. (i.e. similar behaviour to Alpha)

    aug = iaa.Alpha(iap.Choice([0.49, 0.51]), iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    expected_same = kpsoi.deepcopy()
    expected_both_shifted = kpsoi.shift(x=1)
    expected_first_shifted = KeypointsOnImage([kps[0].shift(x=1), kps[1]], shape=kpsoi.shape)
    expected_second_shifted = KeypointsOnImage([kps[0], kps[1].shift(x=1)], shape=kpsoi.shape)
    seen = [0, 0]
    for _ in sm.xrange(200):
        observed = aug.augment_keypoints([kpsoi])[0]
        if keypoints_equal([observed], [expected_same]):
            seen[0] += 1
        elif keypoints_equal([observed], [expected_both_shifted]):
            seen[1] += 1
        elif keypoints_equal([observed], [expected_first_shifted]):
            seen[2] += 1
        elif keypoints_equal([observed], [expected_second_shifted]):
            seen[3] += 1
        else:
            assert False
    assert 100 - 50 < seen[0] < 100 + 50
    assert 100 - 50 < seen[1] < 100 + 50
    """

    # propagating
    aug = iaa.AlphaElementwise(0.0, iaa.Affine(translate_px={"x": 1}), iaa.Affine(translate_px={"y": 1}),
                               name="AlphaElementwiseTest")

    def propagator(kpsoi_to_aug, augmenter, parents, default):
        if "AlphaElementwise" in augmenter.name:
            return False
        else:
            return default

    hooks = ia.HooksKeypoints(propagator=propagator)
    observed = aug.augment_keypoints([kpsoi], hooks=hooks)[0]
    assert keypoints_equal([observed], [kpsoi])

    # -----
    # polygons
    # -----
    ps = [ia.Polygon([(5, 5), (10, 5), (10, 10)])]
    psoi = ia.PolygonsOnImage(ps, shape=(20, 20, 3))

    aug = iaa.AlphaElementwise(1.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_polygons([psoi])
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(psoi.polygons[0])
    assert observed[0].polygons[0].is_valid

    aug = iaa.AlphaElementwise(0.501, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_polygons([psoi])
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(psoi.polygons[0])
    assert observed[0].polygons[0].is_valid

    aug = iaa.AlphaElementwise(0.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_polygons([psoi])
    expected = psoi.shift(left=1)
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(expected.polygons[0])
    assert observed[0].polygons[0].is_valid

    aug = iaa.AlphaElementwise(0.499, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_polygons([psoi])
    expected = psoi.shift(left=1)
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(expected.polygons[0])
    assert observed[0].polygons[0].is_valid

    # per_channel
    aug = iaa.AlphaElementwise(1.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    observed = aug.augment_polygons([psoi])
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(psoi.polygons[0])
    assert observed[0].polygons[0].is_valid

    aug = iaa.AlphaElementwise(0.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    observed = aug.augment_polygons([psoi])
    expected = psoi.shift(left=1)
    assert len(observed) == 1
    assert len(observed[0].polygons) == 1
    assert observed[0].shape == psoi.shape
    assert observed[0].polygons[0].exterior_almost_equals(expected.polygons[0])
    assert observed[0].polygons[0].is_valid

    aug = iaa.AlphaElementwise(iap.Choice([0.49, 0.51]), iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    expected_same = psoi.deepcopy()
    expected_shifted = psoi.shift(left=1)
    seen = [0, 0]
    for _ in sm.xrange(200):
        observed = aug.augment_polygons([psoi])[0]
        if observed.polygons[0].exterior_almost_equals(expected_same.polygons[0]):
            seen[0] += 1
        elif observed.polygons[0].exterior_almost_equals(expected_shifted.polygons[0]):
            seen[1] += 1
        else:
            assert False
    assert 100 - 50 < seen[0] < 100 + 50
    assert 100 - 50 < seen[1] < 100 + 50

    # empty polygons
    aug = iaa.AlphaElementwise(0.501, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_polygons(ia.PolygonsOnImage([], shape=(1, 2, 3)))
    assert len(observed.polygons) == 0
    assert observed.shape == (1, 2, 3)

    # propagating
    aug = iaa.AlphaElementwise(0.0, iaa.Affine(translate_px={"x": 1}), iaa.Affine(translate_px={"y": 1}), name="AlphaTest")

    def propagator(psoi_to_aug, augmenter, parents, default):
        if "Alpha" in augmenter.name:
            return False
        else:
            return default

    hooks = ia.HooksKeypoints(propagator=propagator)  # no hooks for polygons yet, so we use HooksKeypoints
    observed = aug.augment_polygons([psoi], hooks=hooks)[0]
    assert observed.polygons[0].exterior_almost_equals(psoi.polygons[0])
예제 #9
0
def test_AverageBlur():
    reseed()

    base_img = np.zeros((11, 11, 1), dtype=np.uint8)
    base_img[5, 5, 0] = 200
    base_img[4, 5, 0] = 100
    base_img[6, 5, 0] = 100
    base_img[5, 4, 0] = 100
    base_img[5, 6, 0] = 100

    blur3x3 = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 11, 11, 11, 0, 0, 0, 0],
               [0, 0, 0, 11, 44, 56, 44, 11, 0, 0, 0],
               [0, 0, 0, 11, 56, 67, 56, 11, 0, 0, 0],
               [0, 0, 0, 11, 44, 56, 44, 11, 0, 0, 0],
               [0, 0, 0, 0, 11, 11, 11, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
    blur3x3 = np.array(blur3x3, dtype=np.uint8)[..., np.newaxis]

    blur4x4 = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0],
               [0, 0, 0, 6, 25, 31, 31, 25, 6, 0, 0],
               [0, 0, 0, 6, 31, 38, 38, 31, 6, 0, 0],
               [0, 0, 0, 6, 31, 38, 38, 31, 6, 0, 0],
               [0, 0, 0, 6, 25, 31, 31, 25, 6, 0, 0],
               [0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
    blur4x4 = np.array(blur4x4, dtype=np.uint8)[..., np.newaxis]

    blur5x5 = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0],
               [0, 0, 4, 16, 20, 20, 20, 16, 4, 0, 0],
               [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0],
               [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0],
               [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0],
               [0, 0, 4, 16, 20, 20, 20, 16, 4, 0, 0],
               [0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
    blur5x5 = np.array(blur5x5, dtype=np.uint8)[..., np.newaxis]

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=0, y=0),
            ia.Keypoint(x=1, y=1),
            ia.Keypoint(x=2, y=2)
        ],
                            shape=base_img.shape)
    ]

    # no blur, shouldnt change anything
    aug = iaa.AverageBlur(k=0)
    observed = aug.augment_image(base_img)
    assert np.array_equal(observed, base_img)

    # k=3
    aug = iaa.AverageBlur(k=3)
    observed = aug.augment_image(base_img)
    assert np.array_equal(observed, blur3x3)

    # k=5
    aug = iaa.AverageBlur(k=5)
    observed = aug.augment_image(base_img)
    assert np.array_equal(observed, blur5x5)

    # k as (3, 4)
    aug = iaa.AverageBlur(k=(3, 4))
    nb_iterations = 100
    nb_seen = [0, 0]
    for i in sm.xrange(nb_iterations):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, blur3x3):
            nb_seen[0] += 1
        elif np.array_equal(observed, blur4x4):
            nb_seen[1] += 1
        else:
            raise Exception("Unexpected result in AverageBlur@1")
    p_seen = [v / nb_iterations for v in nb_seen]
    assert 0.4 <= p_seen[0] <= 0.6
    assert 0.4 <= p_seen[1] <= 0.6

    # k as (3, 5)
    aug = iaa.AverageBlur(k=(3, 5))
    nb_iterations = 100
    nb_seen = [0, 0, 0]
    for i in sm.xrange(nb_iterations):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, blur3x3):
            nb_seen[0] += 1
        elif np.array_equal(observed, blur4x4):
            nb_seen[1] += 1
        elif np.array_equal(observed, blur5x5):
            nb_seen[2] += 1
        else:
            raise Exception("Unexpected result in AverageBlur@2")
    p_seen = [v / nb_iterations for v in nb_seen]
    assert 0.23 <= p_seen[0] <= 0.43
    assert 0.23 <= p_seen[1] <= 0.43
    assert 0.23 <= p_seen[2] <= 0.43

    # k as stochastic parameter
    aug = iaa.AverageBlur(k=iap.Choice([3, 5]))
    nb_iterations = 100
    nb_seen = [0, 0]
    for i in sm.xrange(nb_iterations):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, blur3x3):
            nb_seen[0] += 1
        elif np.array_equal(observed, blur5x5):
            nb_seen[1] += 1
        else:
            raise Exception("Unexpected result in AverageBlur@3")
    p_seen = [v / nb_iterations for v in nb_seen]
    assert 0.4 <= p_seen[0] <= 0.6
    assert 0.4 <= p_seen[1] <= 0.6

    # k as ((3, 5), (3, 5))
    aug = iaa.AverageBlur(k=((3, 5), (3, 5)))

    possible = dict()
    for kh in [3, 4, 5]:
        for kw in [3, 4, 5]:
            key = (kh, kw)
            if kh == 0 or kw == 0:
                possible[key] = np.copy(base_img)
            else:
                possible[key] = cv2.blur(base_img, (kh, kw))[..., np.newaxis]

    nb_iterations = 250
    nb_seen = dict([(key, 0) for key, val in possible.items()])
    for i in sm.xrange(nb_iterations):
        observed = aug.augment_image(base_img)
        for key, img_aug in possible.items():
            if np.array_equal(observed, img_aug):
                nb_seen[key] += 1
    # dont check sum here, because 0xX and Xx0 are all the same, i.e. much
    # higher sum than nb_iterations
    assert all([v > 0 for v in nb_seen.values()])

    # keypoints shouldnt be changed
    aug = iaa.AverageBlur(k=3)
    aug_det = aug.to_deterministic()
    observed = aug.augment_keypoints(keypoints)
    expected = keypoints
    assert keypoints_equal(observed, expected)

    observed = aug_det.augment_keypoints(keypoints)
    expected = keypoints
    assert keypoints_equal(observed, expected)

    #############################
    # test other dtypes below
    #############################

    # --
    # blur of various dtypes at k=0
    # --
    aug = iaa.AverageBlur(k=0)

    # bool
    image = np.zeros((3, 3), dtype=bool)
    image[1, 1] = True
    image[2, 2] = True
    image_aug = aug.augment_image(image)
    assert image_aug.dtype.type == np.bool_
    assert np.all(image_aug == image)

    # uint, int
    for dtype in [np.uint8, np.uint16, np.int8, np.int16]:
        _min_value, center_value, max_value = iadt.get_value_range_of_dtype(
            dtype)
        image = np.zeros((3, 3), dtype=dtype)
        image[1, 1] = int(center_value + 0.4 * max_value)
        image[2, 2] = int(center_value + 0.4 * max_value)
        image_aug = aug.augment_image(image)
        assert image_aug.dtype.type == dtype
        assert np.all(image_aug == image)

    # float
    for dtype, value in zip([np.float16, np.float32, np.float64],
                            [5000, 1000 * 1000, 1000 * 1000 * 1000]):
        image = np.zeros((3, 3), dtype=dtype)
        image[1, 1] = value
        image[2, 2] = value
        image_aug = aug.augment_image(image)
        assert image_aug.dtype.type == dtype
        assert np.allclose(image_aug, image)

    # --
    # blur of various dtypes at k=3
    # and using an example value of 100 for int/uint/float and True for bool
    # --
    aug = iaa.AverageBlur(k=3)

    # prototype mask
    # we place values in a 3x3 grid at positions (row=1, col=1) and (row=2, col=2) (beginning with 0)
    # AverageBlur uses cv2.blur(), which uses BORDER_REFLECT_101 as its default padding mode,
    # see https://docs.opencv.org/3.1.0/d2/de8/group__core__array.html
    # the matrix below shows the 3x3 grid and the padded row/col values around it
    # [1, 0, 1, 0, 1]
    # [0, 0, 0, 0, 0]
    # [1, 0, 1, 0, 1]
    # [0, 0, 0, 1, 0]
    # [1, 0, 1, 0, 1]
    mask = np.float64([[4 / 9, 2 / 9, 4 / 9], [2 / 9, 2 / 9, 3 / 9],
                       [4 / 9, 3 / 9, 5 / 9]])

    # bool
    image = np.zeros((3, 3), dtype=bool)
    image[1, 1] = True
    image[2, 2] = True
    image_aug = aug.augment_image(image)
    expected = mask > 0.5
    assert image_aug.dtype.type == np.bool_
    assert np.all(image_aug == expected)

    # uint, int
    for dtype in [np.uint8, np.uint16, np.int8, np.int16]:
        image = np.zeros((3, 3), dtype=dtype)
        image[1, 1] = 100
        image[2, 2] = 100
        image_aug = aug.augment_image(image)
        expected = np.round(mask * 100).astype(
            dtype)  # cv2.blur() applies rounding for int/uint dtypes
        diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64))
        assert image_aug.dtype.type == dtype
        assert np.max(diff) <= 2

    # float
    for dtype in [np.float16, np.float32, np.float64]:
        image = np.zeros((3, 3), dtype=dtype)
        image[1, 1] = 100.0
        image[2, 2] = 100.0
        image_aug = aug.augment_image(image)
        expected = (mask * 100.0).astype(dtype)
        diff = np.abs(
            image_aug.astype(np.float128) - expected.astype(np.float128))
        assert image_aug.dtype.type == dtype
        assert np.max(diff) < 1.0

    # --
    # blur of various dtypes at k=3
    # and values being half-way between center and maximum for each dtype (bool is skipped as it doesnt make any
    # sense here)
    # The goal of this test is to verify that no major loss of resolution happens for large dtypes.
    # --
    aug = iaa.AverageBlur(k=3)

    # prototype mask (see above)
    mask = np.float64([[4 / 9, 2 / 9, 4 / 9], [2 / 9, 2 / 9, 3 / 9],
                       [4 / 9, 3 / 9, 5 / 9]])

    # uint, int
    for dtype in [np.uint8, np.uint16, np.int8, np.int16]:
        _min_value, center_value, max_value = iadt.get_value_range_of_dtype(
            dtype)
        value = int(center_value + 0.4 * max_value)
        image = np.zeros((3, 3), dtype=dtype)
        image[1, 1] = value
        image[2, 2] = value
        image_aug = aug.augment_image(image)
        expected = (mask * value).astype(dtype)
        diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64))
        assert image_aug.dtype.type == dtype
        # accepts difference of 4, 8, 16 (at 1, 2, 4 bytes, i.e. 8, 16, 32 bit)
        assert np.max(diff) <= 2**(1 + np.dtype(dtype).itemsize)

    # float
    for dtype, value in zip([np.float16, np.float32, np.float64],
                            [5000, 1000 * 1000, 1000 * 1000 * 1000]):
        image = np.zeros((3, 3), dtype=dtype)
        image[1, 1] = value
        image[2, 2] = value
        image_aug = aug.augment_image(image)
        expected = (mask * value).astype(dtype)
        diff = np.abs(
            image_aug.astype(np.float128) - expected.astype(np.float128))
        assert image_aug.dtype.type == dtype
        # accepts difference of 2.0, 4.0, 8.0, 16.0 (at 1, 2, 4, 8 bytes, i.e. 8, 16, 32, 64 bit)
        assert np.max(diff) < 2**(1 + np.dtype(dtype).itemsize)

    # assert failure on invalid dtypes
    aug = iaa.AverageBlur(k=3)
    for dt in [np.uint32, np.uint64, np.int32, np.int64]:
        got_exception = False
        try:
            _ = aug.augment_image(np.zeros((1, 1), dtype=dt))
        except Exception as exc:
            assert "forbidden dtype" in str(exc)
            got_exception = True
        assert got_exception
예제 #10
0
def test_determinism():
    reseed()

    images = [
        ia.quokka(size=(128, 128)),
        ia.quokka(size=(64, 64)),
        ia.imresize_single_image(skimage.data.astronaut(), (128, 256))
    ]
    images.extend([ia.quokka(size=(16, 16))] * 20)

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=20, y=10, vis=None, label=None), ia.Keypoint(x=5, y=5, vis=None, label=None),
            ia.Keypoint(x=10, y=43, vis=None, label=None)], shape=(50, 60, 3))
    ] * 20

    augs = [
        iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.SomeOf(1, [iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.OneOf([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.Sometimes(0.5, iaa.Fliplr(1.0)),
        iaa.WithColorspace("HSV", children=iaa.Add((-50, 50))),
        # iaa.WithChannels([0], iaa.Add((-50, 50))),
        # iaa.Noop(name="Noop-nochange"),
        # iaa.Lambda(
        #     func_images=lambda images, random_state, parents, hooks: images,
        #     func_keypoints=lambda keypoints_on_images, random_state, parents, hooks: keypoints_on_images,
        #     name="Lambda-nochange"
        # ),
        # iaa.AssertLambda(
        #     func_images=lambda images, random_state, parents, hooks: True,
        #     func_keypoints=lambda keypoints_on_images, random_state, parents, hooks: True,
        #     name="AssertLambda-nochange"
        # ),
        # iaa.AssertShape(
        #     (None, None, None, 3),
        #     check_keypoints=False,
        #     name="AssertShape-nochange"
        # ),
        iaa.Resize((0.5, 0.9)),
        iaa.CropAndPad(px=(-50, 50)),
        iaa.Pad(px=(1, 50)),
        iaa.Crop(px=(1, 50)),
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.Superpixels(p_replace=(0.25, 1.0), n_segments=(16, 128)),
        # iaa.ChangeColorspace(to_colorspace="GRAY"),
        iaa.Grayscale(alpha=(0.1, 1.0)),
        iaa.GaussianBlur((0.1, 3.0)),
        iaa.AverageBlur((3, 11)),
        iaa.MedianBlur((3, 11)),
        # iaa.Convolve(np.array([[0, 1, 0],
        #                       [1, -4, 1],
        #                       [0, 1, 0]])),
        iaa.Sharpen(alpha=(0.1, 1.0), lightness=(0.8, 1.2)),
        iaa.Emboss(alpha=(0.1, 1.0), strength=(0.8, 1.2)),
        iaa.EdgeDetect(alpha=(0.1, 1.0)),
        iaa.DirectedEdgeDetect(alpha=(0.1, 1.0), direction=(0.0, 1.0)),
        iaa.Add((-50, 50)),
        iaa.AddElementwise((-50, 50)),
        iaa.AdditiveGaussianNoise(scale=(0.1, 1.0)),
        iaa.Multiply((0.6, 1.4)),
        iaa.MultiplyElementwise((0.6, 1.4)),
        iaa.Dropout((0.3, 0.5)),
        iaa.CoarseDropout((0.3, 0.5), size_percent=(0.05, 0.2)),
        iaa.Invert(0.5),
        iaa.ContrastNormalization((0.6, 1.4)),
        iaa.Affine(scale=(0.7, 1.3), translate_percent=(-0.1, 0.1),
                   rotate=(-20, 20), shear=(-20, 20), order=ia.ALL,
                   mode=ia.ALL, cval=(0, 255)),
        iaa.PiecewiseAffine(scale=(0.1, 0.3)),
        iaa.ElasticTransformation(alpha=0.5)
    ]

    augs_affect_geometry = [
        iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.SomeOf(1, [iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.OneOf([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.Sometimes(0.5, iaa.Fliplr(1.0)),
        iaa.Resize((0.5, 0.9)),
        iaa.CropAndPad(px=(-50, 50)),
        iaa.Pad(px=(1, 50)),
        iaa.Crop(px=(1, 50)),
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.Affine(scale=(0.7, 1.3), translate_percent=(-0.1, 0.1),
                   rotate=(-20, 20), shear=(-20, 20), order=ia.ALL,
                   mode=ia.ALL, cval=(0, 255)),
        iaa.PiecewiseAffine(scale=(0.1, 0.3)),
        iaa.ElasticTransformation(alpha=(5, 100), sigma=(3, 5))
    ]

    for aug in augs:
        aug_det = aug.to_deterministic()
        images_aug1 = aug_det.augment_images(images)
        images_aug2 = aug_det.augment_images(images)

        aug_det = aug.to_deterministic()
        images_aug3 = aug_det.augment_images(images)
        images_aug4 = aug_det.augment_images(images)

        assert array_equal_lists(images_aug1, images_aug2), \
            "Images (1, 2) expected to be identical for %s" % (aug.name,)

        assert array_equal_lists(images_aug3, images_aug4), \
            "Images (3, 4) expected to be identical for %s" % (aug.name,)

        assert not array_equal_lists(images_aug1, images_aug3), \
            "Images (1, 3) expected to be different for %s" % (aug.name,)

    for aug in augs_affect_geometry:
        aug_det = aug.to_deterministic()
        kps_aug1 = aug_det.augment_keypoints(keypoints)
        kps_aug2 = aug_det.augment_keypoints(keypoints)

        aug_det = aug.to_deterministic()
        kps_aug3 = aug_det.augment_keypoints(keypoints)
        kps_aug4 = aug_det.augment_keypoints(keypoints)

        assert keypoints_equal(kps_aug1, kps_aug2), \
            "Keypoints (1, 2) expected to be identical for %s" % (aug.name,)

        assert keypoints_equal(kps_aug3, kps_aug4), \
            "Keypoints (3, 4) expected to be identical for %s" % (aug.name,)

        assert not keypoints_equal(kps_aug1, kps_aug3), \
            "Keypoints (1, 3) expected to be different for %s" % (aug.name,)
예제 #11
0
파일: test_blend.py 프로젝트: xtj49/imgaug
def test_AlphaElementwise():
    reseed()

    base_img = np.zeros((3, 3, 1), dtype=np.uint8)
    heatmaps_arr = np.float32([[0.0, 0.0, 1.0], [0.0, 0.0, 1.0],
                               [0.0, 1.0, 1.0]])
    heatmaps_arr_r1 = np.float32([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
                                  [0.0, 0.0, 1.0]])
    heatmaps_arr_l1 = np.float32([[0.0, 1.0, 0.0], [0.0, 1.0, 0.0],
                                  [1.0, 1.0, 0.0]])
    heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(3, 3, 3))

    aug = iaa.AlphaElementwise(1, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = base_img + 10
    assert np.allclose(observed, expected)

    aug = iaa.AlphaElementwise(1, iaa.Affine(translate_px={"x": 1}),
                               iaa.Affine(translate_px={"x": -1}))
    observed = aug.augment_heatmaps([heatmaps])[0]
    assert observed.shape == (3, 3, 3)
    assert 0 - 1e-6 < observed.min_value < 0 + 1e-6
    assert 1 - 1e-6 < observed.max_value < 1 + 1e-6
    assert np.allclose(observed.get_arr(), heatmaps_arr_r1)

    aug = iaa.AlphaElementwise(0, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = base_img + 20
    assert np.allclose(observed, expected)

    aug = iaa.AlphaElementwise(0, iaa.Affine(translate_px={"x": 1}),
                               iaa.Affine(translate_px={"x": -1}))
    observed = aug.augment_heatmaps([heatmaps])[0]
    assert observed.shape == (3, 3, 3)
    assert 0 - 1e-6 < observed.min_value < 0 + 1e-6
    assert 1 - 1e-6 < observed.max_value < 1 + 1e-6
    assert np.allclose(observed.get_arr(), heatmaps_arr_l1)

    aug = iaa.AlphaElementwise(0.75, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = np.round(base_img + 0.75 * 10 + 0.25 * 20).astype(np.uint8)
    assert np.allclose(observed, expected)

    aug = iaa.AlphaElementwise(0.75, None, iaa.Add(20))
    observed = aug.augment_image(base_img + 10)
    expected = np.round(base_img + 0.75 * 10 + 0.25 * (10 + 20)).astype(
        np.uint8)
    assert np.allclose(observed, expected)

    aug = iaa.AlphaElementwise(0.75, iaa.Add(10), None)
    observed = aug.augment_image(base_img + 10)
    expected = np.round(base_img + 0.75 * (10 + 10) + 0.25 * 10).astype(
        np.uint8)
    assert np.allclose(observed, expected)

    base_img = np.zeros((100, 100), dtype=np.uint8)
    aug = iaa.AlphaElementwise((0.0, 1.0), iaa.Add(10), iaa.Add(110))
    observed = (aug.augment_image(base_img) - 10) / 100
    nb_bins = 10
    hist, _ = np.histogram(observed.flatten(),
                           bins=nb_bins,
                           range=(0.0, 1.0),
                           density=False)
    density_expected = 1.0 / nb_bins
    density_tolerance = 0.05
    for nb_samples in hist:
        density = nb_samples / observed.size
        assert density_expected - density_tolerance < density < density_expected + density_tolerance

    base_img = np.zeros((1, 1, 100), dtype=np.uint8)
    aug = iaa.AlphaElementwise((0.0, 1.0),
                               iaa.Add(10),
                               iaa.Add(110),
                               per_channel=True)
    observed = aug.augment_image(base_img)
    assert len(set(observed.flatten())) > 1

    # propagating
    aug = iaa.AlphaElementwise(0.5,
                               iaa.Add(100),
                               iaa.Add(50),
                               name="AlphaElementwiseTest")

    def propagator(images, augmenter, parents, default):
        if "AlphaElementwise" in augmenter.name:
            return False
        else:
            return default

    hooks = ia.HooksImages(propagator=propagator)
    image = np.zeros((10, 10, 3), dtype=np.uint8) + 1
    observed = aug.augment_image(image, hooks=hooks)
    assert np.array_equal(observed, image)

    # -----
    # heatmaps and per_channel
    # -----
    class _DummyMaskParameter(iap.StochasticParameter):
        def __init__(self, inverted=False):
            super(_DummyMaskParameter, self).__init__()
            self.nb_calls = 0
            self.inverted = inverted

        def _draw_samples(self, size, random_state):
            self.nb_calls += 1
            h, w = size
            ones = np.ones((h, w), dtype=np.float32)
            zeros = np.zeros((h, w), dtype=np.float32)
            if self.nb_calls == 1:
                return zeros if not self.inverted else ones
            elif self.nb_calls in [2, 3]:
                return ones if not self.inverted else zeros
            else:
                assert False

    aug = iaa.AlphaElementwise(_DummyMaskParameter(inverted=False),
                               iaa.Affine(translate_px={"x": 1}),
                               iaa.Affine(translate_px={"x": -1}),
                               per_channel=True)
    observed = aug.augment_heatmaps([heatmaps])[0]
    assert observed.shape == (3, 3, 3)
    assert 0 - 1e-6 < observed.min_value < 0 + 1e-6
    assert 1 - 1e-6 < observed.max_value < 1 + 1e-6
    assert np.allclose(observed.get_arr(), heatmaps_arr_r1)

    aug = iaa.AlphaElementwise(_DummyMaskParameter(inverted=True),
                               iaa.Affine(translate_px={"x": 1}),
                               iaa.Affine(translate_px={"x": -1}),
                               per_channel=True)
    observed = aug.augment_heatmaps([heatmaps])[0]
    assert observed.shape == (3, 3, 3)
    assert 0 - 1e-6 < observed.min_value < 0 + 1e-6
    assert 1 - 1e-6 < observed.max_value < 1 + 1e-6
    assert np.allclose(observed.get_arr(), heatmaps_arr_l1)

    # -----
    # keypoints
    # -----
    kps = [ia.Keypoint(x=5, y=10), ia.Keypoint(x=6, y=11)]
    kpsoi = ia.KeypointsOnImage(kps, shape=(20, 20, 3))

    aug = iaa.AlphaElementwise(1.0, iaa.Noop(),
                               iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.AlphaElementwise(0.501, iaa.Noop(),
                               iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.AlphaElementwise(0.0, iaa.Noop(),
                               iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    aug = iaa.AlphaElementwise(0.499, iaa.Noop(),
                               iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    # per_channel
    aug = iaa.AlphaElementwise(1.0,
                               iaa.Noop(),
                               iaa.Affine(translate_px={"x": 1}),
                               per_channel=True)
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.AlphaElementwise(0.0,
                               iaa.Noop(),
                               iaa.Affine(translate_px={"x": 1}),
                               per_channel=True)
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])
    """
    TODO this test currently doesn't work as AlphaElementwise augments keypoints without sampling
    overlay factors per (x, y) location. (i.e. similar behaviour to Alpha)

    aug = iaa.Alpha(iap.Choice([0.49, 0.51]), iaa.Noop(), iaa.Affine(translate_px={"x": 1}), per_channel=True)
    expected_same = kpsoi.deepcopy()
    expected_both_shifted = kpsoi.shift(x=1)
    expected_first_shifted = KeypointsOnImage([kps[0].shift(x=1), kps[1]], shape=kpsoi.shape)
    expected_second_shifted = KeypointsOnImage([kps[0], kps[1].shift(x=1)], shape=kpsoi.shape)
    seen = [0, 0]
    for _ in sm.xrange(200):
        observed = aug.augment_keypoints([kpsoi])[0]
        if keypoints_equal([observed], [expected_same]):
            seen[0] += 1
        elif keypoints_equal([observed], [expected_both_shifted]):
            seen[1] += 1
        elif keypoints_equal([observed], [expected_first_shifted]):
            seen[2] += 1
        elif keypoints_equal([observed], [expected_second_shifted]):
            seen[3] += 1
        else:
            assert False
    assert 100 - 50 < seen[0] < 100 + 50
    assert 100 - 50 < seen[1] < 100 + 50
    """

    # propagating
    aug = iaa.AlphaElementwise(0.0,
                               iaa.Affine(translate_px={"x": 1}),
                               iaa.Affine(translate_px={"y": 1}),
                               name="AlphaElementwiseTest")

    def propagator(kpsoi_to_aug, augmenter, parents, default):
        if "AlphaElementwise" in augmenter.name:
            return False
        else:
            return default

    hooks = ia.HooksKeypoints(propagator=propagator)
    observed = aug.augment_keypoints([kpsoi], hooks=hooks)[0]
    assert keypoints_equal([observed], [kpsoi])
예제 #12
0
def test_determinism():
    reseed()

    images = [
        ia.quokka(size=(128, 128)),
        ia.quokka(size=(64, 64)),
        ia.quokka((128, 256))
    ]
    images.extend([ia.quokka(size=(16, 16))] * 20)

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=20, y=10), ia.Keypoint(x=5, y=5),
            ia.Keypoint(x=10, y=43)], shape=(50, 60, 3))
    ] * 20

    augs = [
        iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.SomeOf(1, [iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.OneOf([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.Sometimes(0.5, iaa.Fliplr(1.0)),
        iaa.WithColorspace("HSV", children=iaa.Add((-50, 50))),
        iaa.Resize((0.5, 0.9)),
        iaa.CropAndPad(px=(-50, 50)),
        iaa.Pad(px=(1, 50)),
        iaa.Crop(px=(1, 50)),
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.Superpixels(p_replace=(0.25, 1.0), n_segments=(16, 128)),
        iaa.Grayscale(alpha=(0.1, 1.0)),
        iaa.GaussianBlur((0.1, 3.0)),
        iaa.AverageBlur((3, 11)),
        iaa.MedianBlur((3, 11)),
        iaa.Sharpen(alpha=(0.1, 1.0), lightness=(0.8, 1.2)),
        iaa.Emboss(alpha=(0.1, 1.0), strength=(0.8, 1.2)),
        iaa.EdgeDetect(alpha=(0.1, 1.0)),
        iaa.DirectedEdgeDetect(alpha=(0.1, 1.0), direction=(0.0, 1.0)),
        iaa.Add((-50, 50)),
        iaa.AddElementwise((-50, 50)),
        iaa.AdditiveGaussianNoise(scale=(0.1, 1.0)),
        iaa.Multiply((0.6, 1.4)),
        iaa.MultiplyElementwise((0.6, 1.4)),
        iaa.Dropout((0.3, 0.5)),
        iaa.CoarseDropout((0.3, 0.5), size_percent=(0.05, 0.2)),
        iaa.Invert(0.5),
        iaa.Affine(scale=(0.7, 1.3), translate_percent=(-0.1, 0.1),
                   rotate=(-20, 20), shear=(-20, 20), order=ia.ALL,
                   mode=ia.ALL, cval=(0, 255)),
        iaa.PiecewiseAffine(scale=(0.1, 0.3)),
        iaa.ElasticTransformation(alpha=10.0)
    ]

    augs_affect_geometry = [
        iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.SomeOf(1, [iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.OneOf([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.Sometimes(0.5, iaa.Fliplr(1.0)),
        iaa.Resize((0.5, 0.9)),
        iaa.CropAndPad(px=(-50, 50)),
        iaa.Pad(px=(1, 50)),
        iaa.Crop(px=(1, 50)),
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.Affine(scale=(0.7, 1.3), translate_percent=(-0.1, 0.1),
                   rotate=(-20, 20), shear=(-20, 20), order=ia.ALL,
                   mode=ia.ALL, cval=(0, 255)),
        iaa.PiecewiseAffine(scale=(0.1, 0.3)),
        iaa.ElasticTransformation(alpha=(5, 100), sigma=(3, 5))
    ]

    for aug in augs:
        aug_det = aug.to_deterministic()
        images_aug1 = aug_det.augment_images(images)
        images_aug2 = aug_det.augment_images(images)

        aug_det = aug.to_deterministic()
        images_aug3 = aug_det.augment_images(images)
        images_aug4 = aug_det.augment_images(images)

        assert array_equal_lists(images_aug1, images_aug2), \
            "Images (1, 2) expected to be identical for %s" % (aug.name,)

        assert array_equal_lists(images_aug3, images_aug4), \
            "Images (3, 4) expected to be identical for %s" % (aug.name,)

        assert not array_equal_lists(images_aug1, images_aug3), \
            "Images (1, 3) expected to be different for %s" % (aug.name,)

    for aug in augs_affect_geometry:
        aug_det = aug.to_deterministic()
        kps_aug1 = aug_det.augment_keypoints(keypoints)
        kps_aug2 = aug_det.augment_keypoints(keypoints)

        aug_det = aug.to_deterministic()
        kps_aug3 = aug_det.augment_keypoints(keypoints)
        kps_aug4 = aug_det.augment_keypoints(keypoints)

        assert keypoints_equal(kps_aug1, kps_aug2), \
            "Keypoints (1, 2) expected to be identical for %s" % (aug.name,)

        assert keypoints_equal(kps_aug3, kps_aug4), \
            "Keypoints (3, 4) expected to be identical for %s" % (aug.name,)

        assert not keypoints_equal(kps_aug1, kps_aug3), \
            "Keypoints (1, 3) expected to be different for %s" % (aug.name,)
예제 #13
0
def test_LinearContrast():
    reseed()

    img = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    img = np.uint8(img)
    img3d = np.tile(img[:, :, np.newaxis], (1, 1, 3))

    # check basic functionality with alpha=1 or 2 (deterministic) and per_chanenl on/off (makes
    # no difference due to deterministic alpha)
    for per_channel in [False, 0, 0.0, True, 1, 1.0]:
        for alpha in [1, 2]:
            aug = iaa.LinearContrast(alpha=iap.Deterministic(alpha),
                                     per_channel=per_channel)
            img_aug = aug.augment_image(img)
            img3d_aug = aug.augment_image(img3d)
            assert img_aug.dtype.type == np.uint8
            assert img3d_aug.dtype.type == np.uint8
            assert np.array_equal(
                img_aug, contrast_lib._adjust_linear(img, alpha=alpha))
            assert np.array_equal(
                img3d_aug, contrast_lib._adjust_linear(img3d, alpha=alpha))

    # check that tuple to uniform works
    aug = iaa.LinearContrast((1, 2))
    assert isinstance(aug.params1d[0], iap.Uniform)
    assert isinstance(aug.params1d[0].a, iap.Deterministic)
    assert isinstance(aug.params1d[0].b, iap.Deterministic)
    assert aug.params1d[0].a.value == 1
    assert aug.params1d[0].b.value == 2

    # check that list to choice works
    aug = iaa.LinearContrast([1, 2])
    assert isinstance(aug.params1d[0], iap.Choice)
    assert all([val in aug.params1d[0].a for val in [1, 2]])

    # check that per_channel at 50% prob works
    aug = iaa.LinearContrast((0.5, 2.0), per_channel=0.5)
    seen = [False, False]
    # must not use just value 128 here, otherwise nothing will change as all values would have
    # distance 0 to 128
    img1000d = np.zeros((1, 1, 1000), dtype=np.uint8) + 128 + 20
    for _ in sm.xrange(100):
        img_aug = aug.augment_image(img1000d)
        assert img_aug.dtype.type == np.uint8
        l = len(set(img_aug.flatten().tolist()))
        if l == 1:
            seen[0] = True
        else:
            seen[1] = True
        if all(seen):
            break
    assert all(seen)

    # check that keypoints are not changed
    kpsoi = ia.KeypointsOnImage([ia.Keypoint(1, 1)], shape=(3, 3, 3))
    kpsoi_aug = iaa.LinearContrast(alpha=2).augment_keypoints([kpsoi])
    assert keypoints_equal([kpsoi], kpsoi_aug)

    # check that heatmaps are not changed
    heatmaps = ia.HeatmapsOnImage(np.zeros((3, 3, 1), dtype=np.float32) + 0.5,
                                  shape=(3, 3, 3))
    heatmaps_aug = iaa.LinearContrast(alpha=2).augment_heatmaps([heatmaps])[0]
    assert np.allclose(heatmaps.arr_0to1, heatmaps_aug.arr_0to1)
예제 #14
0
def test_Fliplr():
    reseed()

    base_img = np.array([[0, 0, 1],
                         [0, 0, 1],
                         [0, 1, 1]], dtype=np.uint8)
    base_img = base_img[:, :, np.newaxis]

    base_img_flipped = np.array([[1, 0, 0],
                                 [1, 0, 0],
                                 [1, 1, 0]], dtype=np.uint8)
    base_img_flipped = base_img_flipped[:, :, np.newaxis]

    images = np.array([base_img])
    images_flipped = np.array([base_img_flipped])

    keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1),
                                      ia.Keypoint(x=2, y=2)], shape=base_img.shape)]
    keypoints_flipped = [ia.KeypointsOnImage([ia.Keypoint(x=2, y=0), ia.Keypoint(x=1, y=1),
                                              ia.Keypoint(x=0, y=2)], shape=base_img.shape)]

    polygons = [ia.PolygonsOnImage(
        [ia.Polygon([(0, 0), (2, 0), (2, 2)])],
        shape=base_img.shape)]
    polygons_flipped = [ia.PolygonsOnImage(
        [ia.Polygon([(2, 0), (0, 0), (0, 2)])],
        shape=base_img.shape)]

    # 0% chance of flip
    aug = iaa.Fliplr(0)
    aug_det = aug.to_deterministic()

    for _ in sm.xrange(10):
        observed = aug.augment_images(images)
        expected = images
        assert np.array_equal(observed, expected)

        observed = aug_det.augment_images(images)
        expected = images
        assert np.array_equal(observed, expected)

        observed = aug.augment_keypoints(keypoints)
        expected = keypoints
        assert keypoints_equal(observed, expected)

        observed = aug_det.augment_keypoints(keypoints)
        expected = keypoints
        assert keypoints_equal(observed, expected)

        for aug_ in [aug, aug_det]:
            observed = aug_.augment_polygons(polygons)
            assert len(observed) == 1
            assert len(observed[0].polygons) == 1
            assert observed[0].shape == polygons[0].shape
            assert observed[0].polygons[0].exterior_almost_equals(
                polygons[0].polygons[0])
            assert observed[0].polygons[0].is_valid

    # 0% chance of flip, heatmaps
    aug = iaa.Fliplr(0)
    heatmaps = ia.HeatmapsOnImage(
        np.float32([
            [0, 0.5, 0.75],
            [0, 0.5, 0.75],
            [0.75, 0.75, 0.75],
        ]),
        shape=(3, 3, 3)
    )
    observed = aug.augment_heatmaps([heatmaps])[0]
    expected = heatmaps.get_arr()
    assert observed.shape == heatmaps.shape
    assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6
    assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6
    assert np.array_equal(observed.get_arr(), expected)

    # 100% chance of flip
    aug = iaa.Fliplr(1.0)
    aug_det = aug.to_deterministic()

    for _ in sm.xrange(10):
        observed = aug.augment_images(images)
        expected = images_flipped
        assert np.array_equal(observed, expected)

        observed = aug_det.augment_images(images)
        expected = images_flipped
        assert np.array_equal(observed, expected)

        observed = aug.augment_keypoints(keypoints)
        expected = keypoints_flipped
        assert keypoints_equal(observed, expected)

        observed = aug_det.augment_keypoints(keypoints)
        expected = keypoints_flipped
        assert keypoints_equal(observed, expected)

        for aug_ in [aug, aug_det]:
            observed = aug_.augment_polygons(polygons)
            assert len(observed) == 1
            assert len(observed[0].polygons) == 1
            assert observed[0].shape == polygons[0].shape
            assert observed[0].polygons[0].exterior_almost_equals(
                polygons_flipped[0].polygons[0])
            assert observed[0].polygons[0].is_valid

    # 100% chance of flip, heatmaps
    aug = iaa.Fliplr(1.0)
    heatmaps = ia.HeatmapsOnImage(
        np.float32([
            [0, 0.5, 0.75],
            [0, 0.5, 0.75],
            [0.75, 0.75, 0.75],
        ]),
        shape=(3, 3, 3)
    )
    observed = aug.augment_heatmaps([heatmaps])[0]
    expected = np.fliplr(heatmaps.get_arr())
    assert observed.shape == heatmaps.shape
    assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6
    assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6
    assert np.array_equal(observed.get_arr(), expected)

    # 50% chance of flip
    aug = iaa.Fliplr(0.5)
    aug_det = aug.to_deterministic()

    nb_iterations = 1000
    nb_images_flipped = 0
    nb_images_flipped_det = 0
    nb_keypoints_flipped = 0
    nb_keypoints_flipped_det = 0
    nb_polygons_flipped = 0
    nb_polygons_flipped_det = 0
    for _ in sm.xrange(nb_iterations):
        observed = aug.augment_images(images)
        if np.array_equal(observed, images_flipped):
            nb_images_flipped += 1

        observed = aug_det.augment_images(images)
        if np.array_equal(observed, images_flipped):
            nb_images_flipped_det += 1

        observed = aug.augment_keypoints(keypoints)
        if keypoints_equal(observed, keypoints_flipped):
            nb_keypoints_flipped += 1

        observed = aug_det.augment_keypoints(keypoints)
        if keypoints_equal(observed, keypoints_flipped):
            nb_keypoints_flipped_det += 1

        observed = aug.augment_polygons(polygons)
        if observed[0].polygons[0].exterior_almost_equals(
                polygons_flipped[0].polygons[0]):
            nb_polygons_flipped += 1

        observed = aug_det.augment_polygons(polygons)
        if observed[0].polygons[0].exterior_almost_equals(
                polygons_flipped[0].polygons[0]):
            nb_polygons_flipped_det += 1

    assert int(nb_iterations * 0.3) <= nb_images_flipped <= int(nb_iterations * 0.7)
    assert int(nb_iterations * 0.3) <= nb_keypoints_flipped <= int(nb_iterations * 0.7)
    assert int(nb_iterations * 0.3) <= nb_polygons_flipped <= int(nb_iterations * 0.7)
    assert nb_images_flipped_det in [0, nb_iterations]
    assert nb_keypoints_flipped_det in [0, nb_iterations]
    assert nb_polygons_flipped_det in [0, nb_iterations]

    # 50% chance of flipped, multiple images, list as input
    images_multi = [base_img, base_img]
    aug = iaa.Fliplr(0.5)
    aug_det = aug.to_deterministic()
    nb_iterations = 1000
    nb_flipped_by_pos = [0] * len(images_multi)
    nb_flipped_by_pos_det = [0] * len(images_multi)
    for _ in sm.xrange(nb_iterations):
        observed = aug.augment_images(images_multi)
        for i in sm.xrange(len(images_multi)):
            if np.array_equal(observed[i], base_img_flipped):
                nb_flipped_by_pos[i] += 1

        observed = aug_det.augment_images(images_multi)
        for i in sm.xrange(len(images_multi)):
            if np.array_equal(observed[i], base_img_flipped):
                nb_flipped_by_pos_det[i] += 1

    for val in nb_flipped_by_pos:
        assert int(nb_iterations * 0.3) <= val <= int(nb_iterations * 0.7)

    for val in nb_flipped_by_pos_det:
        assert val in [0, nb_iterations]

    # test StochasticParameter as p
    aug = iaa.Fliplr(p=iap.Choice([0, 1], p=[0.7, 0.3]))
    seen = [0, 0]
    for _ in sm.xrange(1000):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, base_img):
            seen[0] += 1
        elif np.array_equal(observed, base_img_flipped):
            seen[1] += 1
        else:
            assert False
    assert 700 - 75 < seen[0] < 700 + 75
    assert 300 - 75 < seen[1] < 300 + 75

    # test exceptions for wrong parameter types
    got_exception = False
    try:
        _ = iaa.Fliplr(p="test")
    except Exception:
        got_exception = True
    assert got_exception

    # test get_parameters()
    aug = iaa.Fliplr(p=0.5)
    params = aug.get_parameters()
    assert isinstance(params[0], iap.Binomial)
    assert isinstance(params[0].p, iap.Deterministic)
    assert 0.5 - 1e-4 < params[0].p.value < 0.5 + 1e-4

    ###################
    # test other dtypes
    ###################
    aug = iaa.Fliplr(1.0)

    image = np.zeros((3, 3), dtype=bool)
    image[0, 0] = True
    expected = np.zeros((3, 3), dtype=bool)
    expected[0, 2] = True
    image_aug = aug.augment_image(image)
    assert image_aug.dtype.type == image.dtype.type
    assert np.all(image_aug == expected)

    for dtype in [np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int32, np.int64]:
        min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype)
        value = max_value
        image = np.zeros((3, 3), dtype=dtype)
        image[0, 0] = value
        expected = np.zeros((3, 3), dtype=dtype)
        expected[0, 2] = value
        image_aug = aug.augment_image(image)
        assert image_aug.dtype.type == dtype
        assert np.array_equal(image_aug, expected)

    for dtype, value in zip([np.float16, np.float32, np.float64, np.float128], [5000, 1000**2, 1000**3, 1000**4]):
        atol = 1e-9 * max_value if dtype != np.float16 else 1e-3 * max_value
        image = np.zeros((3, 3), dtype=dtype)
        image[0, 0] = value
        expected = np.zeros((3, 3), dtype=dtype)
        expected[0, 2] = value
        image_aug = aug.augment_image(image)
        assert image_aug.dtype.type == dtype
        assert np.allclose(image_aug, expected, atol=atol)
예제 #15
0
def test_AverageBlur():
    reseed()

    base_img = np.zeros((11, 11, 1), dtype=np.uint8)
    base_img[5, 5, 0] = 200
    base_img[4, 5, 0] = 100
    base_img[6, 5, 0] = 100
    base_img[5, 4, 0] = 100
    base_img[5, 6, 0] = 100

    blur3x3 = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 11, 11, 11, 0, 0, 0, 0],
               [0, 0, 0, 11, 44, 56, 44, 11, 0, 0, 0],
               [0, 0, 0, 11, 56, 67, 56, 11, 0, 0, 0],
               [0, 0, 0, 11, 44, 56, 44, 11, 0, 0, 0],
               [0, 0, 0, 0, 11, 11, 11, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
    blur3x3 = np.array(blur3x3, dtype=np.uint8)[..., np.newaxis]

    blur4x4 = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0],
               [0, 0, 0, 6, 25, 31, 31, 25, 6, 0, 0],
               [0, 0, 0, 6, 31, 38, 38, 31, 6, 0, 0],
               [0, 0, 0, 6, 31, 38, 38, 31, 6, 0, 0],
               [0, 0, 0, 6, 25, 31, 31, 25, 6, 0, 0],
               [0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
    blur4x4 = np.array(blur4x4, dtype=np.uint8)[..., np.newaxis]

    blur5x5 = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0],
               [0, 0, 4, 16, 20, 20, 20, 16, 4, 0, 0],
               [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0],
               [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0],
               [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0],
               [0, 0, 4, 16, 20, 20, 20, 16, 4, 0, 0],
               [0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
    blur5x5 = np.array(blur5x5, dtype=np.uint8)[..., np.newaxis]

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=0, y=0),
            ia.Keypoint(x=1, y=1),
            ia.Keypoint(x=2, y=2)
        ],
                            shape=base_img.shape)
    ]

    # no blur, shouldnt change anything
    aug = iaa.AverageBlur(k=0)
    observed = aug.augment_image(base_img)
    assert np.array_equal(observed, base_img)

    # k=3
    aug = iaa.AverageBlur(k=3)
    observed = aug.augment_image(base_img)
    assert np.array_equal(observed, blur3x3)

    # k=5
    aug = iaa.AverageBlur(k=5)
    observed = aug.augment_image(base_img)
    assert np.array_equal(observed, blur5x5)

    # k as (3, 4)
    aug = iaa.AverageBlur(k=(3, 4))
    nb_iterations = 100
    nb_seen = [0, 0]
    for i in sm.xrange(nb_iterations):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, blur3x3):
            nb_seen[0] += 1
        elif np.array_equal(observed, blur4x4):
            nb_seen[1] += 1
        else:
            raise Exception("Unexpected result in AverageBlur@1")
    p_seen = [v / nb_iterations for v in nb_seen]
    assert 0.4 <= p_seen[0] <= 0.6
    assert 0.4 <= p_seen[1] <= 0.6

    # k as (3, 5)
    aug = iaa.AverageBlur(k=(3, 5))
    nb_iterations = 100
    nb_seen = [0, 0, 0]
    for i in sm.xrange(nb_iterations):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, blur3x3):
            nb_seen[0] += 1
        elif np.array_equal(observed, blur4x4):
            nb_seen[1] += 1
        elif np.array_equal(observed, blur5x5):
            nb_seen[2] += 1
        else:
            raise Exception("Unexpected result in AverageBlur@2")
    p_seen = [v / nb_iterations for v in nb_seen]
    assert 0.23 <= p_seen[0] <= 0.43
    assert 0.23 <= p_seen[1] <= 0.43
    assert 0.23 <= p_seen[2] <= 0.43

    # k as stochastic parameter
    aug = iaa.AverageBlur(k=iap.Choice([3, 5]))
    nb_iterations = 100
    nb_seen = [0, 0]
    for i in sm.xrange(nb_iterations):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, blur3x3):
            nb_seen[0] += 1
        elif np.array_equal(observed, blur5x5):
            nb_seen[1] += 1
        else:
            raise Exception("Unexpected result in AverageBlur@3")
    p_seen = [v / nb_iterations for v in nb_seen]
    assert 0.4 <= p_seen[0] <= 0.6
    assert 0.4 <= p_seen[1] <= 0.6

    # k as ((3, 5), (3, 5))
    aug = iaa.AverageBlur(k=((3, 5), (3, 5)))

    possible = dict()
    for kh in [3, 4, 5]:
        for kw in [3, 4, 5]:
            key = (kh, kw)
            if kh == 0 or kw == 0:
                possible[key] = np.copy(base_img)
            else:
                possible[key] = cv2.blur(base_img, (kh, kw))[..., np.newaxis]

    nb_iterations = 250
    nb_seen = dict([(key, 0) for key, val in possible.items()])
    for i in sm.xrange(nb_iterations):
        observed = aug.augment_image(base_img)
        for key, img_aug in possible.items():
            if np.array_equal(observed, img_aug):
                nb_seen[key] += 1
    # dont check sum here, because 0xX and Xx0 are all the same, i.e. much
    # higher sum than nb_iterations
    assert all([v > 0 for v in nb_seen.values()])

    # keypoints shouldnt be changed
    aug = iaa.AverageBlur(k=3)
    aug_det = aug.to_deterministic()
    observed = aug.augment_keypoints(keypoints)
    expected = keypoints
    assert keypoints_equal(observed, expected)

    observed = aug_det.augment_keypoints(keypoints)
    expected = keypoints
    assert keypoints_equal(observed, expected)
예제 #16
0
def test_GaussianBlur():
    reseed()

    base_img = np.array([[0, 0, 0], [0, 255, 0], [0, 0, 0]], dtype=np.uint8)
    base_img = base_img[:, :, np.newaxis]

    images = np.array([base_img])
    images_list = [base_img]
    outer_pixels = ([], [])
    for i in sm.xrange(base_img.shape[0]):
        for j in sm.xrange(base_img.shape[1]):
            if i != j:
                outer_pixels[0].append(i)
                outer_pixels[1].append(j)

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=0, y=0),
            ia.Keypoint(x=1, y=1),
            ia.Keypoint(x=2, y=2)
        ],
                            shape=base_img.shape)
    ]

    # no blur, shouldnt change anything
    aug = iaa.GaussianBlur(sigma=0)
    aug_det = aug.to_deterministic()

    observed = aug.augment_images(images)
    expected = images
    assert np.array_equal(observed, expected)

    # weak blur of center pixel
    aug = iaa.GaussianBlur(sigma=0.5)
    aug_det = aug.to_deterministic()

    # images as numpy array
    observed = aug.augment_images(images)
    assert 100 < observed[0][1, 1] < 255
    assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all()
    assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all()

    observed = aug_det.augment_images(images)
    assert 100 < observed[0][1, 1] < 255
    assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all()
    assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all()

    # images as list
    observed = aug.augment_images(images_list)
    assert 100 < observed[0][1, 1] < 255
    assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all()
    assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all()

    observed = aug_det.augment_images(images_list)
    assert 100 < observed[0][1, 1] < 255
    assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all()
    assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all()

    # keypoints shouldnt be changed
    observed = aug.augment_keypoints(keypoints)
    expected = keypoints
    assert keypoints_equal(observed, expected)

    observed = aug_det.augment_keypoints(keypoints)
    expected = keypoints
    assert keypoints_equal(observed, expected)

    # varying blur sigmas
    aug = iaa.GaussianBlur(sigma=(0, 1))
    aug_det = aug.to_deterministic()

    last_aug = None
    last_aug_det = None
    nb_changed_aug = 0
    nb_changed_aug_det = 0
    nb_iterations = 1000
    for i in sm.xrange(nb_iterations):
        observed_aug = aug.augment_images(images)
        observed_aug_det = aug_det.augment_images(images)
        if i == 0:
            last_aug = observed_aug
            last_aug_det = observed_aug_det
        else:
            if not np.array_equal(observed_aug, last_aug):
                nb_changed_aug += 1
            if not np.array_equal(observed_aug_det, last_aug_det):
                nb_changed_aug_det += 1
            last_aug = observed_aug
            last_aug_det = observed_aug_det
    assert nb_changed_aug >= int(nb_iterations * 0.8)
    assert nb_changed_aug_det == 0
예제 #17
0
def test_MedianBlur():
    reseed()

    base_img = np.zeros((11, 11, 1), dtype=np.uint8)
    base_img[3:8, 3:8, 0] = 1
    base_img[4:7, 4:7, 0] = 2
    base_img[5:6, 5:6, 0] = 3

    blur3x3 = np.zeros_like(base_img)
    blur3x3[3:8, 3:8, 0] = 1
    blur3x3[4:7, 4:7, 0] = 2
    blur3x3[4, 4, 0] = 1
    blur3x3[4, 6, 0] = 1
    blur3x3[6, 4, 0] = 1
    blur3x3[6, 6, 0] = 1
    blur3x3[3, 3, 0] = 0
    blur3x3[3, 7, 0] = 0
    blur3x3[7, 3, 0] = 0
    blur3x3[7, 7, 0] = 0

    blur5x5 = np.copy(blur3x3)
    blur5x5[4, 3, 0] = 0
    blur5x5[3, 4, 0] = 0
    blur5x5[6, 3, 0] = 0
    blur5x5[7, 4, 0] = 0
    blur5x5[4, 7, 0] = 0
    blur5x5[3, 6, 0] = 0
    blur5x5[6, 7, 0] = 0
    blur5x5[7, 6, 0] = 0
    blur5x5[blur5x5 > 1] = 1

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=0, y=0),
            ia.Keypoint(x=1, y=1),
            ia.Keypoint(x=2, y=2)
        ],
                            shape=base_img.shape)
    ]

    # no blur, shouldnt change anything
    aug = iaa.MedianBlur(k=1)
    observed = aug.augment_image(base_img)
    assert np.array_equal(observed, base_img)

    # k=3
    aug = iaa.MedianBlur(k=3)
    observed = aug.augment_image(base_img)
    assert np.array_equal(observed, blur3x3)

    # k=5
    aug = iaa.MedianBlur(k=5)
    observed = aug.augment_image(base_img)
    assert np.array_equal(observed, blur5x5)

    # k as (3, 5)
    aug = iaa.MedianBlur(k=(3, 5))
    seen = [False, False]
    for i in sm.xrange(100):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, blur3x3):
            seen[0] = True
        elif np.array_equal(observed, blur5x5):
            seen[1] = True
        else:
            raise Exception("Unexpected result in MedianBlur@1")
        if all(seen):
            break
    assert all(seen)

    # k as stochastic parameter
    aug = iaa.MedianBlur(k=iap.Choice([3, 5]))
    seen = [False, False]
    for i in sm.xrange(100):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, blur3x3):
            seen[0] += True
        elif np.array_equal(observed, blur5x5):
            seen[1] += True
        else:
            raise Exception("Unexpected result in MedianBlur@2")
        if all(seen):
            break
    assert all(seen)

    # keypoints shouldnt be changed
    aug = iaa.MedianBlur(k=3)
    aug_det = aug.to_deterministic()
    observed = aug.augment_keypoints(keypoints)
    expected = keypoints
    assert keypoints_equal(observed, expected)

    observed = aug_det.augment_keypoints(keypoints)
    expected = keypoints
    assert keypoints_equal(observed, expected)
예제 #18
0
파일: test_blend.py 프로젝트: xtj49/imgaug
def test_Alpha():
    reseed()

    base_img = np.zeros((3, 3, 1), dtype=np.uint8)
    heatmaps_arr = np.float32([[0.0, 0.0, 1.0], [0.0, 0.0, 1.0],
                               [0.0, 1.0, 1.0]])
    heatmaps_arr_r1 = np.float32([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
                                  [0.0, 0.0, 1.0]])
    heatmaps_arr_l1 = np.float32([[0.0, 1.0, 0.0], [0.0, 1.0, 0.0],
                                  [1.0, 1.0, 0.0]])
    heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(3, 3, 3))

    aug = iaa.Alpha(1, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = np.round(base_img + 10).astype(np.uint8)
    assert np.allclose(observed, expected)

    for per_channel in [False, True]:
        aug = iaa.Alpha(1,
                        iaa.Affine(translate_px={"x": 1}),
                        iaa.Affine(translate_px={"x": -1}),
                        per_channel=per_channel)
        observed = aug.augment_heatmaps([heatmaps])[0]
        assert observed.shape == heatmaps.shape
        assert 0 - 1e-6 < heatmaps.min_value < 0 + 1e-6
        assert 1 - 1e-6 < heatmaps.max_value < 1 + 1e-6
        assert np.allclose(observed.get_arr(), heatmaps_arr_r1)

    aug = iaa.Alpha(0, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = np.round(base_img + 20).astype(np.uint8)
    assert np.allclose(observed, expected)

    for per_channel in [False, True]:
        aug = iaa.Alpha(0,
                        iaa.Affine(translate_px={"x": 1}),
                        iaa.Affine(translate_px={"x": -1}),
                        per_channel=per_channel)
        observed = aug.augment_heatmaps([heatmaps])[0]
        assert observed.shape == heatmaps.shape
        assert 0 - 1e-6 < heatmaps.min_value < 0 + 1e-6
        assert 1 - 1e-6 < heatmaps.max_value < 1 + 1e-6
        assert np.allclose(observed.get_arr(), heatmaps_arr_l1)

    aug = iaa.Alpha(0.75, iaa.Add(10), iaa.Add(20))
    observed = aug.augment_image(base_img)
    expected = np.round(base_img + 0.75 * 10 + 0.25 * 20).astype(np.uint8)
    assert np.allclose(observed, expected)

    aug = iaa.Alpha(0.75, None, iaa.Add(20))
    observed = aug.augment_image(base_img + 10)
    expected = np.round(base_img + 0.75 * 10 + 0.25 * (10 + 20)).astype(
        np.uint8)
    assert np.allclose(observed, expected)

    aug = iaa.Alpha(0.75, iaa.Add(10), None)
    observed = aug.augment_image(base_img + 10)
    expected = np.round(base_img + 0.75 * (10 + 10) + 0.25 * 10).astype(
        np.uint8)
    assert np.allclose(observed, expected)

    base_img = np.zeros((1, 2, 1), dtype=np.uint8)
    nb_iterations = 1000
    aug = iaa.Alpha((0.0, 1.0), iaa.Add(10), iaa.Add(110))
    values = []
    for _ in sm.xrange(nb_iterations):
        observed = aug.augment_image(base_img)
        observed_val = np.round(np.average(observed)) - 10
        values.append(observed_val / 100)

    nb_bins = 5
    hist, _ = np.histogram(values,
                           bins=nb_bins,
                           range=(0.0, 1.0),
                           density=False)
    density_expected = 1.0 / nb_bins
    density_tolerance = 0.05
    for nb_samples in hist:
        density = nb_samples / nb_iterations
        assert density_expected - density_tolerance < density < density_expected + density_tolerance

    # bad datatype for factor
    got_exception = False
    try:
        _ = iaa.Alpha(False, iaa.Add(10), None)
    except Exception as exc:
        assert "Expected " in str(exc)
        got_exception = True
    assert got_exception

    # per_channel
    aug = iaa.Alpha(1.0,
                    iaa.Add((0, 100), per_channel=True),
                    None,
                    per_channel=True)
    observed = aug.augment_image(np.zeros((1, 1, 1000), dtype=np.uint8))
    uq = np.unique(observed)
    assert len(uq) > 1
    assert np.max(observed) > 80
    assert np.min(observed) < 20

    aug = iaa.Alpha((0.0, 1.0), iaa.Add(100), None, per_channel=True)
    observed = aug.augment_image(np.zeros((1, 1, 1000), dtype=np.uint8))
    uq = np.unique(observed)
    assert len(uq) > 1
    assert np.max(observed) > 80
    assert np.min(observed) < 20

    aug = iaa.Alpha((0.0, 1.0), iaa.Add(100), iaa.Add(0), per_channel=0.5)
    seen = [0, 0]
    for _ in sm.xrange(200):
        observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8))
        uq = np.unique(observed)
        if len(uq) == 1:
            seen[0] += 1
        elif len(uq) > 1:
            seen[1] += 1
        else:
            assert False
    assert 100 - 50 < seen[0] < 100 + 50
    assert 100 - 50 < seen[1] < 100 + 50

    # bad datatype for per_channel
    got_exception = False
    try:
        _ = iaa.Alpha(0.5, iaa.Add(10), None, per_channel="test")
    except Exception as exc:
        assert "Expected " in str(exc)
        got_exception = True
    assert got_exception

    # propagating
    aug = iaa.Alpha(0.5, iaa.Add(100), iaa.Add(50), name="AlphaTest")

    def propagator(images, augmenter, parents, default):
        if "Alpha" in augmenter.name:
            return False
        else:
            return default

    hooks = ia.HooksImages(propagator=propagator)
    image = np.zeros((10, 10, 3), dtype=np.uint8) + 1
    observed = aug.augment_image(image, hooks=hooks)
    assert np.array_equal(observed, image)

    # -----
    # keypoints
    # -----
    kps = [ia.Keypoint(x=5, y=10), ia.Keypoint(x=6, y=11)]
    kpsoi = ia.KeypointsOnImage(kps, shape=(20, 20, 3))

    aug = iaa.Alpha(1.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.Alpha(0.501, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.Alpha(0.0, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    aug = iaa.Alpha(0.499, iaa.Noop(), iaa.Affine(translate_px={"x": 1}))
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    # per_channel
    aug = iaa.Alpha(1.0,
                    iaa.Noop(),
                    iaa.Affine(translate_px={"x": 1}),
                    per_channel=True)
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.deepcopy()
    assert keypoints_equal([observed], [expected])

    aug = iaa.Alpha(0.0,
                    iaa.Noop(),
                    iaa.Affine(translate_px={"x": 1}),
                    per_channel=True)
    observed = aug.augment_keypoints([kpsoi])[0]
    expected = kpsoi.shift(x=1)
    assert keypoints_equal([observed], [expected])

    aug = iaa.Alpha(iap.Choice([0.49, 0.51]),
                    iaa.Noop(),
                    iaa.Affine(translate_px={"x": 1}),
                    per_channel=True)
    expected_same = kpsoi.deepcopy()
    expected_shifted = kpsoi.shift(x=1)
    seen = [0, 0]
    for _ in sm.xrange(200):
        observed = aug.augment_keypoints([kpsoi])[0]
        if keypoints_equal([observed], [expected_same]):
            seen[0] += 1
        elif keypoints_equal([observed], [expected_shifted]):
            seen[1] += 1
        else:
            assert False
    assert 100 - 50 < seen[0] < 100 + 50
    assert 100 - 50 < seen[1] < 100 + 50

    # propagating
    aug = iaa.Alpha(0.0,
                    iaa.Affine(translate_px={"x": 1}),
                    iaa.Affine(translate_px={"y": 1}),
                    name="AlphaTest")

    def propagator(kpsoi_to_aug, augmenter, parents, default):
        if "Alpha" in augmenter.name:
            return False
        else:
            return default

    hooks = ia.HooksKeypoints(propagator=propagator)
    observed = aug.augment_keypoints([kpsoi], hooks=hooks)[0]
    assert keypoints_equal([observed], [kpsoi])

    # -----
    # get_parameters()
    # -----
    first = iaa.Noop()
    second = iaa.Sequential([iaa.Add(1)])
    aug = iaa.Alpha(0.65, first, second, per_channel=1)
    params = aug.get_parameters()
    assert isinstance(params[0], iap.Deterministic)
    assert isinstance(params[1], iap.Deterministic)
    assert 0.65 - 1e-6 < params[0].value < 0.65 + 1e-6
    assert params[1].value == 1

    # -----
    # get_children_lists()
    # -----
    first = iaa.Noop()
    second = iaa.Sequential([iaa.Add(1)])
    aug = iaa.Alpha(0.65, first, second, per_channel=1)
    children_lsts = aug.get_children_lists()
    assert len(children_lsts) == 2
    assert ia.is_iterable([lst for lst in children_lsts])
    assert first in children_lsts[0]
    assert second == children_lsts[1]
예제 #19
0
def test_Flipud():
    reseed()

    base_img = np.array([[0, 0, 1],
                         [0, 0, 1],
                         [0, 1, 1]], dtype=np.uint8)
    base_img = base_img[:, :, np.newaxis]

    base_img_flipped = np.array([[0, 1, 1],
                                 [0, 0, 1],
                                 [0, 0, 1]], dtype=np.uint8)
    base_img_flipped = base_img_flipped[:, :, np.newaxis]

    images = np.array([base_img])
    images_flipped = np.array([base_img_flipped])

    keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1),
                                      ia.Keypoint(x=2, y=2)], shape=base_img.shape)]
    keypoints_flipped = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=2), ia.Keypoint(x=1, y=1),
                                              ia.Keypoint(x=2, y=0)], shape=base_img.shape)]

    # 0% chance of flip
    aug = iaa.Flipud(0)
    aug_det = aug.to_deterministic()

    for _ in sm.xrange(10):
        observed = aug.augment_images(images)
        expected = images
        assert np.array_equal(observed, expected)

        observed = aug_det.augment_images(images)
        expected = images
        assert np.array_equal(observed, expected)

        observed = aug.augment_keypoints(keypoints)
        expected = keypoints
        assert keypoints_equal(observed, expected)

        observed = aug_det.augment_keypoints(keypoints)
        expected = keypoints
        assert keypoints_equal(observed, expected)

    # 0% chance of flip, heatmaps
    aug = iaa.Flipud(0)
    heatmaps = ia.HeatmapsOnImage(
        np.float32([
            [0, 0.5, 0.75],
            [0, 0.5, 0.75],
            [0.75, 0.75, 0.75],
        ]),
        shape=(3, 3, 3)
    )
    observed = aug.augment_heatmaps([heatmaps])[0]
    expected = heatmaps.get_arr()
    assert observed.shape == heatmaps.shape
    assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6
    assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6
    assert np.array_equal(observed.get_arr(), expected)

    # 100% chance of flip
    aug = iaa.Flipud(1.0)
    aug_det = aug.to_deterministic()

    for _ in sm.xrange(10):
        observed = aug.augment_images(images)
        expected = images_flipped
        assert np.array_equal(observed, expected)

        observed = aug_det.augment_images(images)
        expected = images_flipped
        assert np.array_equal(observed, expected)

        observed = aug.augment_keypoints(keypoints)
        expected = keypoints_flipped
        assert keypoints_equal(observed, expected)

        observed = aug_det.augment_keypoints(keypoints)
        expected = keypoints_flipped
        assert keypoints_equal(observed, expected)

    # 100% chance of flip, heatmaps
    aug = iaa.Flipud(1.0)
    heatmaps = ia.HeatmapsOnImage(
        np.float32([
            [0, 0.5, 0.75],
            [0, 0.5, 0.75],
            [0.75, 0.75, 0.75],
        ]),
        shape=(3, 3, 3)
    )
    observed = aug.augment_heatmaps([heatmaps])[0]
    expected = np.flipud(heatmaps.get_arr())
    assert observed.shape == heatmaps.shape
    assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6
    assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6
    assert np.array_equal(observed.get_arr(), expected)

    # 50% chance of flip
    aug = iaa.Flipud(0.5)
    aug_det = aug.to_deterministic()

    nb_iterations = 1000
    nb_images_flipped = 0
    nb_images_flipped_det = 0
    nb_keypoints_flipped = 0
    nb_keypoints_flipped_det = 0
    for _ in sm.xrange(nb_iterations):
        observed = aug.augment_images(images)
        if np.array_equal(observed, images_flipped):
            nb_images_flipped += 1

        observed = aug_det.augment_images(images)
        if np.array_equal(observed, images_flipped):
            nb_images_flipped_det += 1

        observed = aug.augment_keypoints(keypoints)
        if keypoints_equal(observed, keypoints_flipped):
            nb_keypoints_flipped += 1

        observed = aug_det.augment_keypoints(keypoints)
        if keypoints_equal(observed, keypoints_flipped):
            nb_keypoints_flipped_det += 1

    assert int(nb_iterations * 0.3) <= nb_images_flipped <= int(nb_iterations * 0.7)
    assert int(nb_iterations * 0.3) <= nb_keypoints_flipped <= int(nb_iterations * 0.7)
    assert nb_images_flipped_det in [0, nb_iterations]
    assert nb_keypoints_flipped_det in [0, nb_iterations]

    # 50% chance of flipped, multiple images, list as input
    images_multi = [base_img, base_img]
    aug = iaa.Flipud(0.5)
    aug_det = aug.to_deterministic()
    nb_iterations = 1000
    nb_flipped_by_pos = [0] * len(images_multi)
    nb_flipped_by_pos_det = [0] * len(images_multi)
    for _ in sm.xrange(nb_iterations):
        observed = aug.augment_images(images_multi)
        for i in sm.xrange(len(images_multi)):
            if np.array_equal(observed[i], base_img_flipped):
                nb_flipped_by_pos[i] += 1

        observed = aug_det.augment_images(images_multi)
        for i in sm.xrange(len(images_multi)):
            if np.array_equal(observed[i], base_img_flipped):
                nb_flipped_by_pos_det[i] += 1

    for val in nb_flipped_by_pos:
        assert int(nb_iterations * 0.3) <= val <= int(nb_iterations * 0.7)

    for val in nb_flipped_by_pos_det:
        assert val in [0, nb_iterations]

    # test StochasticParameter as p
    aug = iaa.Flipud(p=iap.Choice([0, 1], p=[0.7, 0.3]))
    seen = [0, 0]
    for _ in sm.xrange(1000):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, base_img):
            seen[0] += 1
        elif np.array_equal(observed, base_img_flipped):
            seen[1] += 1
        else:
            assert False
    assert 700 - 75 < seen[0] < 700 + 75
    assert 300 - 75 < seen[1] < 300 + 75

    # test exceptions for wrong parameter types
    got_exception = False
    try:
        _ = iaa.Flipud(p="test")
    except Exception:
        got_exception = True
    assert got_exception

    # test get_parameters()
    aug = iaa.Flipud(p=0.5)
    params = aug.get_parameters()
    assert isinstance(params[0], iap.Binomial)
    assert isinstance(params[0].p, iap.Deterministic)
    assert 0.5 - 1e-4 < params[0].p.value < 0.5 + 1e-4
예제 #20
0
def test_Fliplr():
    reseed()

    base_img = np.array([[0, 0, 1], [0, 0, 1], [0, 1, 1]], dtype=np.uint8)
    base_img = base_img[:, :, np.newaxis]

    base_img_flipped = np.array([[1, 0, 0], [1, 0, 0], [1, 1, 0]],
                                dtype=np.uint8)
    base_img_flipped = base_img_flipped[:, :, np.newaxis]

    images = np.array([base_img])
    images_flipped = np.array([base_img_flipped])

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=0, y=0),
            ia.Keypoint(x=1, y=1),
            ia.Keypoint(x=2, y=2)
        ],
                            shape=base_img.shape)
    ]
    keypoints_flipped = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=2, y=0),
            ia.Keypoint(x=1, y=1),
            ia.Keypoint(x=0, y=2)
        ],
                            shape=base_img.shape)
    ]

    # 0% chance of flip
    aug = iaa.Fliplr(0)
    aug_det = aug.to_deterministic()

    for _ in sm.xrange(10):
        observed = aug.augment_images(images)
        expected = images
        assert np.array_equal(observed, expected)

        observed = aug_det.augment_images(images)
        expected = images
        assert np.array_equal(observed, expected)

        observed = aug.augment_keypoints(keypoints)
        expected = keypoints
        assert keypoints_equal(observed, expected)

        observed = aug_det.augment_keypoints(keypoints)
        expected = keypoints
        assert keypoints_equal(observed, expected)

    # 0% chance of flip, heatmaps
    aug = iaa.Fliplr(0)
    heatmaps = ia.HeatmapsOnImage(np.float32([
        [0, 0.5, 0.75],
        [0, 0.5, 0.75],
        [0.75, 0.75, 0.75],
    ]),
                                  shape=(3, 3, 3))
    observed = aug.augment_heatmaps([heatmaps])[0]
    expected = heatmaps.get_arr()
    assert observed.shape == heatmaps.shape
    assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6
    assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6
    assert np.array_equal(observed.get_arr(), expected)

    # 100% chance of flip
    aug = iaa.Fliplr(1.0)
    aug_det = aug.to_deterministic()

    for _ in sm.xrange(10):
        observed = aug.augment_images(images)
        expected = images_flipped
        assert np.array_equal(observed, expected)

        observed = aug_det.augment_images(images)
        expected = images_flipped
        assert np.array_equal(observed, expected)

        observed = aug.augment_keypoints(keypoints)
        expected = keypoints_flipped
        assert keypoints_equal(observed, expected)

        observed = aug_det.augment_keypoints(keypoints)
        expected = keypoints_flipped
        assert keypoints_equal(observed, expected)

    # 100% chance of flip, heatmaps
    aug = iaa.Fliplr(1.0)
    heatmaps = ia.HeatmapsOnImage(np.float32([
        [0, 0.5, 0.75],
        [0, 0.5, 0.75],
        [0.75, 0.75, 0.75],
    ]),
                                  shape=(3, 3, 3))
    observed = aug.augment_heatmaps([heatmaps])[0]
    expected = np.fliplr(heatmaps.get_arr())
    assert observed.shape == heatmaps.shape
    assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6
    assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6
    assert np.array_equal(observed.get_arr(), expected)

    # 50% chance of flip
    aug = iaa.Fliplr(0.5)
    aug_det = aug.to_deterministic()

    nb_iterations = 1000
    nb_images_flipped = 0
    nb_images_flipped_det = 0
    nb_keypoints_flipped = 0
    nb_keypoints_flipped_det = 0
    for _ in sm.xrange(nb_iterations):
        observed = aug.augment_images(images)
        if np.array_equal(observed, images_flipped):
            nb_images_flipped += 1

        observed = aug_det.augment_images(images)
        if np.array_equal(observed, images_flipped):
            nb_images_flipped_det += 1

        observed = aug.augment_keypoints(keypoints)
        if keypoints_equal(observed, keypoints_flipped):
            nb_keypoints_flipped += 1

        observed = aug_det.augment_keypoints(keypoints)
        if keypoints_equal(observed, keypoints_flipped):
            nb_keypoints_flipped_det += 1

    assert int(nb_iterations * 0.3) <= nb_images_flipped <= int(
        nb_iterations * 0.7)
    assert int(nb_iterations * 0.3) <= nb_keypoints_flipped <= int(
        nb_iterations * 0.7)
    assert nb_images_flipped_det in [0, nb_iterations]
    assert nb_keypoints_flipped_det in [0, nb_iterations]

    # 50% chance of flipped, multiple images, list as input
    images_multi = [base_img, base_img]
    aug = iaa.Fliplr(0.5)
    aug_det = aug.to_deterministic()
    nb_iterations = 1000
    nb_flipped_by_pos = [0] * len(images_multi)
    nb_flipped_by_pos_det = [0] * len(images_multi)
    for _ in sm.xrange(nb_iterations):
        observed = aug.augment_images(images_multi)
        for i in sm.xrange(len(images_multi)):
            if np.array_equal(observed[i], base_img_flipped):
                nb_flipped_by_pos[i] += 1

        observed = aug_det.augment_images(images_multi)
        for i in sm.xrange(len(images_multi)):
            if np.array_equal(observed[i], base_img_flipped):
                nb_flipped_by_pos_det[i] += 1

    for val in nb_flipped_by_pos:
        assert int(nb_iterations * 0.3) <= val <= int(nb_iterations * 0.7)

    for val in nb_flipped_by_pos_det:
        assert val in [0, nb_iterations]

    # test StochasticParameter as p
    aug = iaa.Fliplr(p=iap.Choice([0, 1], p=[0.7, 0.3]))
    seen = [0, 0]
    for _ in sm.xrange(1000):
        observed = aug.augment_image(base_img)
        if np.array_equal(observed, base_img):
            seen[0] += 1
        elif np.array_equal(observed, base_img_flipped):
            seen[1] += 1
        else:
            assert False
    assert 700 - 75 < seen[0] < 700 + 75
    assert 300 - 75 < seen[1] < 300 + 75

    # test exceptions for wrong parameter types
    got_exception = False
    try:
        _ = iaa.Fliplr(p="test")
    except Exception:
        got_exception = True
    assert got_exception

    # test get_parameters()
    aug = iaa.Fliplr(p=0.5)
    params = aug.get_parameters()
    assert isinstance(params[0], iap.Binomial)
    assert isinstance(params[0].p, iap.Deterministic)
    assert 0.5 - 1e-4 < params[0].p.value < 0.5 + 1e-4

    ###################
    # test other dtypes
    ###################
    aug = iaa.Fliplr(1.0)

    image = np.zeros((3, 3), dtype=bool)
    image[0, 0] = True
    expected = np.zeros((3, 3), dtype=bool)
    expected[0, 2] = True
    image_aug = aug.augment_image(image)
    assert image_aug.dtype.type == image.dtype.type
    assert np.all(image_aug == expected)

    for dtype in [
            np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int32,
            np.int64
    ]:
        min_value, center_value, max_value = iadt.get_value_range_of_dtype(
            dtype)
        value = max_value
        image = np.zeros((3, 3), dtype=dtype)
        image[0, 0] = value
        expected = np.zeros((3, 3), dtype=dtype)
        expected[0, 2] = value
        image_aug = aug.augment_image(image)
        assert image_aug.dtype.type == dtype
        assert np.array_equal(image_aug, expected)

    for dtype, value in zip([np.float16, np.float32, np.float64, np.float128],
                            [5000, 1000**2, 1000**3, 1000**4]):
        atol = 1e-9 * max_value if dtype != np.float16 else 1e-3 * max_value
        image = np.zeros((3, 3), dtype=dtype)
        image[0, 0] = value
        expected = np.zeros((3, 3), dtype=dtype)
        expected[0, 2] = value
        image_aug = aug.augment_image(image)
        assert image_aug.dtype.type == dtype
        assert np.allclose(image_aug, expected, atol=atol)
예제 #21
0
def test_SigmoidContrast():
    reseed()

    img = [
        [1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]
    ]
    img = np.uint8(img)
    img3d = np.tile(img[:, :, np.newaxis], (1, 1, 3))

    # check basic functionality with per_chanenl on/off (makes no difference due to deterministic
    # parameters)
    for per_channel in [False, 0, 0.0, True, 1, 1.0]:
        for gain, cutoff in itertools.product([5, 10], [0.25, 0.75]):
            aug = iaa.SigmoidContrast(gain=iap.Deterministic(gain), cutoff=iap.Deterministic(cutoff), per_channel=per_channel)
            img_aug = aug.augment_image(img)
            img3d_aug = aug.augment_image(img3d)
            assert img_aug.dtype.type == np.uint8
            assert img3d_aug.dtype.type == np.uint8
            assert np.array_equal(img_aug, skimage.exposure.adjust_sigmoid(img, gain=gain, cutoff=cutoff))
            assert np.array_equal(img3d_aug, skimage.exposure.adjust_sigmoid(img3d, gain=gain, cutoff=cutoff))

    # check that tuple to uniform works
    # note that gain and cutoff are saved in inverted order in _ContrastFuncWrapper to match
    # the order of skimage's function
    aug = iaa.SigmoidContrast(gain=(1, 2), cutoff=(0.25, 0.75))
    assert isinstance(aug.params1d[0], iap.Uniform)
    assert isinstance(aug.params1d[0].a, iap.Deterministic)
    assert isinstance(aug.params1d[0].b, iap.Deterministic)
    assert np.allclose(aug.params1d[0].a.value, 0.25)
    assert np.allclose(aug.params1d[0].b.value, 0.75)
    assert isinstance(aug.params1d[1], iap.Uniform)
    assert isinstance(aug.params1d[1].a, iap.Deterministic)
    assert isinstance(aug.params1d[1].b, iap.Deterministic)
    assert aug.params1d[1].a.value == 1
    assert aug.params1d[1].b.value == 2

    # check that list to choice works
    # note that gain and cutoff are saved in inverted order in _ContrastFuncWrapper to match
    # the order of skimage's function
    aug = iaa.SigmoidContrast(gain=[1, 2], cutoff=[0.25, 0.75])
    assert isinstance(aug.params1d[0], iap.Choice)
    assert all([np.allclose(val, val_choice) for val, val_choice in zip([0.25, 0.75], aug.params1d[0].a)])
    assert isinstance(aug.params1d[1], iap.Choice)
    assert all([val in aug.params1d[1].a for val in [1, 2]])

    # check that per_channel at 50% prob works
    aug = iaa.SigmoidContrast(gain=(1, 10), cutoff=(0.25, 0.75), per_channel=0.5)
    seen = [False, False]
    img1000d = np.zeros((1, 1, 1000), dtype=np.uint8) + 128
    for _ in sm.xrange(100):
        img_aug = aug.augment_image(img1000d)
        assert img_aug.dtype.type == np.uint8
        l = len(set(img_aug.flatten().tolist()))
        if l == 1:
            seen[0] = True
        else:
            seen[1] = True
        if all(seen):
            break
    assert all(seen)

    # check that keypoints are not changed
    kpsoi = ia.KeypointsOnImage([ia.Keypoint(1, 1)], shape=(3, 3, 3))
    kpsoi_aug = iaa.SigmoidContrast(gain=10, cutoff=0.5).augment_keypoints([kpsoi])
    assert keypoints_equal([kpsoi], kpsoi_aug)

    # check that heatmaps are not changed
    heatmaps = ia.HeatmapsOnImage(np.zeros((3, 3, 1), dtype=np.float32) + 0.5, shape=(3, 3, 3))
    heatmaps_aug = iaa.SigmoidContrast(gain=10, cutoff=0.5).augment_heatmaps([heatmaps])[0]
    assert np.allclose(heatmaps.arr_0to1, heatmaps_aug.arr_0to1)
예제 #22
0
def test_determinism():
    reseed()

    images = [
        ia.quokka(size=(128, 128)),
        ia.quokka(size=(64, 64)),
        ia.imresize_single_image(skimage.data.astronaut(), (128, 256))
    ]
    images.extend([ia.quokka(size=(16, 16))] * 20)

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=20, y=10), ia.Keypoint(x=5, y=5),
            ia.Keypoint(x=10, y=43)], shape=(50, 60, 3))
    ] * 20

    augs = [
        iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.SomeOf(1, [iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.OneOf([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.Sometimes(0.5, iaa.Fliplr(1.0)),
        iaa.WithColorspace("HSV", children=iaa.Add((-50, 50))),
        # iaa.WithChannels([0], iaa.Add((-50, 50))),
        # iaa.Noop(name="Noop-nochange"),
        # iaa.Lambda(
        #     func_images=lambda images, random_state, parents, hooks: images,
        #     func_keypoints=lambda keypoints_on_images, random_state, parents, hooks: keypoints_on_images,
        #     name="Lambda-nochange"
        # ),
        # iaa.AssertLambda(
        #     func_images=lambda images, random_state, parents, hooks: True,
        #     func_keypoints=lambda keypoints_on_images, random_state, parents, hooks: True,
        #     name="AssertLambda-nochange"
        # ),
        # iaa.AssertShape(
        #     (None, None, None, 3),
        #     check_keypoints=False,
        #     name="AssertShape-nochange"
        # ),
        iaa.Resize((0.5, 0.9)),
        iaa.CropAndPad(px=(-50, 50)),
        iaa.Pad(px=(1, 50)),
        iaa.Crop(px=(1, 50)),
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.Superpixels(p_replace=(0.25, 1.0), n_segments=(16, 128)),
        # iaa.ChangeColorspace(to_colorspace="GRAY"),
        iaa.Grayscale(alpha=(0.1, 1.0)),
        iaa.GaussianBlur((0.1, 3.0)),
        iaa.AverageBlur((3, 11)),
        iaa.MedianBlur((3, 11)),
        # iaa.Convolve(np.array([[0, 1, 0],
        #                       [1, -4, 1],
        #                       [0, 1, 0]])),
        iaa.Sharpen(alpha=(0.1, 1.0), lightness=(0.8, 1.2)),
        iaa.Emboss(alpha=(0.1, 1.0), strength=(0.8, 1.2)),
        iaa.EdgeDetect(alpha=(0.1, 1.0)),
        iaa.DirectedEdgeDetect(alpha=(0.1, 1.0), direction=(0.0, 1.0)),
        iaa.Add((-50, 50)),
        iaa.AddElementwise((-50, 50)),
        iaa.AdditiveGaussianNoise(scale=(0.1, 1.0)),
        iaa.Multiply((0.6, 1.4)),
        iaa.MultiplyElementwise((0.6, 1.4)),
        iaa.Dropout((0.3, 0.5)),
        iaa.CoarseDropout((0.3, 0.5), size_percent=(0.05, 0.2)),
        iaa.Invert(0.5),
        iaa.ContrastNormalization((0.6, 1.4)),
        iaa.Affine(scale=(0.7, 1.3), translate_percent=(-0.1, 0.1),
                   rotate=(-20, 20), shear=(-20, 20), order=ia.ALL,
                   mode=ia.ALL, cval=(0, 255)),
        iaa.PiecewiseAffine(scale=(0.1, 0.3)),
        iaa.ElasticTransformation(alpha=0.5)
    ]

    augs_affect_geometry = [
        iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.SomeOf(1, [iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.OneOf([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.Sometimes(0.5, iaa.Fliplr(1.0)),
        iaa.Resize((0.5, 0.9)),
        iaa.CropAndPad(px=(-50, 50)),
        iaa.Pad(px=(1, 50)),
        iaa.Crop(px=(1, 50)),
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.Affine(scale=(0.7, 1.3), translate_percent=(-0.1, 0.1),
                   rotate=(-20, 20), shear=(-20, 20), order=ia.ALL,
                   mode=ia.ALL, cval=(0, 255)),
        iaa.PiecewiseAffine(scale=(0.1, 0.3)),
        iaa.ElasticTransformation(alpha=(5, 100), sigma=(3, 5))
    ]

    for aug in augs:
        aug_det = aug.to_deterministic()
        images_aug1 = aug_det.augment_images(images)
        images_aug2 = aug_det.augment_images(images)

        aug_det = aug.to_deterministic()
        images_aug3 = aug_det.augment_images(images)
        images_aug4 = aug_det.augment_images(images)

        assert array_equal_lists(images_aug1, images_aug2), \
            "Images (1, 2) expected to be identical for %s" % (aug.name,)

        assert array_equal_lists(images_aug3, images_aug4), \
            "Images (3, 4) expected to be identical for %s" % (aug.name,)

        assert not array_equal_lists(images_aug1, images_aug3), \
            "Images (1, 3) expected to be different for %s" % (aug.name,)

    for aug in augs_affect_geometry:
        aug_det = aug.to_deterministic()
        kps_aug1 = aug_det.augment_keypoints(keypoints)
        kps_aug2 = aug_det.augment_keypoints(keypoints)

        aug_det = aug.to_deterministic()
        kps_aug3 = aug_det.augment_keypoints(keypoints)
        kps_aug4 = aug_det.augment_keypoints(keypoints)

        assert keypoints_equal(kps_aug1, kps_aug2), \
            "Keypoints (1, 2) expected to be identical for %s" % (aug.name,)

        assert keypoints_equal(kps_aug3, kps_aug4), \
            "Keypoints (3, 4) expected to be identical for %s" % (aug.name,)

        assert not keypoints_equal(kps_aug1, kps_aug3), \
            "Keypoints (1, 3) expected to be different for %s" % (aug.name,)
예제 #23
0
def test_GaussianBlur():
    reseed()

    base_img = np.array([[0, 0, 0], [0, 255, 0], [0, 0, 0]], dtype=np.uint8)
    base_img = base_img[:, :, np.newaxis]

    images = np.array([base_img])
    images_list = [base_img]
    outer_pixels = ([], [])
    for i in sm.xrange(base_img.shape[0]):
        for j in sm.xrange(base_img.shape[1]):
            if i != j:
                outer_pixels[0].append(i)
                outer_pixels[1].append(j)

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=0, y=0),
            ia.Keypoint(x=1, y=1),
            ia.Keypoint(x=2, y=2)
        ],
                            shape=base_img.shape)
    ]

    # no blur, shouldnt change anything
    aug = iaa.GaussianBlur(sigma=0)

    observed = aug.augment_images(images)
    expected = images
    assert np.array_equal(observed, expected)

    # weak blur of center pixel
    aug = iaa.GaussianBlur(sigma=0.5)
    aug_det = aug.to_deterministic()

    # images as numpy array
    observed = aug.augment_images(images)
    assert 100 < observed[0][1, 1] < 255
    assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all()
    assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all()

    observed = aug_det.augment_images(images)
    assert 100 < observed[0][1, 1] < 255
    assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all()
    assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all()

    # images as list
    observed = aug.augment_images(images_list)
    assert 100 < observed[0][1, 1] < 255
    assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all()
    assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all()

    observed = aug_det.augment_images(images_list)
    assert 100 < observed[0][1, 1] < 255
    assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all()
    assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all()

    # keypoints shouldnt be changed
    observed = aug.augment_keypoints(keypoints)
    expected = keypoints
    assert keypoints_equal(observed, expected)

    observed = aug_det.augment_keypoints(keypoints)
    expected = keypoints
    assert keypoints_equal(observed, expected)

    # varying blur sigmas
    aug = iaa.GaussianBlur(sigma=(0, 1))
    aug_det = aug.to_deterministic()

    last_aug = None
    last_aug_det = None
    nb_changed_aug = 0
    nb_changed_aug_det = 0
    nb_iterations = 1000
    for i in sm.xrange(nb_iterations):
        observed_aug = aug.augment_images(images)
        observed_aug_det = aug_det.augment_images(images)
        if i == 0:
            last_aug = observed_aug
            last_aug_det = observed_aug_det
        else:
            if not np.array_equal(observed_aug, last_aug):
                nb_changed_aug += 1
            if not np.array_equal(observed_aug_det, last_aug_det):
                nb_changed_aug_det += 1
            last_aug = observed_aug
            last_aug_det = observed_aug_det
    assert nb_changed_aug >= int(nb_iterations * 0.8)
    assert nb_changed_aug_det == 0

    #############################
    # test other dtypes below
    #############################

    # --
    # blur of various dtypes at sigma=0
    # --
    aug = iaa.GaussianBlur(sigma=0)

    # bool
    image = np.zeros((3, 3), dtype=bool)
    image[1, 1] = True
    image_aug = aug.augment_image(image)
    assert image_aug.dtype.type == np.bool_
    assert np.all(image_aug == image)

    # uint, int
    for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]:
        _min_value, center_value, _max_value = iadt.get_value_range_of_dtype(
            dtype)
        image = np.zeros((3, 3), dtype=dtype)
        image[1, 1] = int(center_value)
        image_aug = aug.augment_image(image)
        assert image_aug.dtype.type == dtype
        assert np.all(image_aug == image)

    # float
    for dtype in [np.float16, np.float32, np.float64]:
        _min_value, center_value, _max_value = iadt.get_value_range_of_dtype(
            dtype)
        image = np.zeros((3, 3), dtype=dtype)
        image[1, 1] = center_value
        image_aug = aug.augment_image(image)
        assert image_aug.dtype.type == dtype
        assert np.allclose(image_aug, image)

    # --
    # blur of bool input at sigma=0.6
    # --
    # here we use a special mask and sigma as otherwise the only values ending up with >0.5 would be the ones that
    # were before the blur already at >0.5
    # prototype kernel, generated via:
    #  mask = np.zeros((5, 5), dtype=np.float64)
    #  mask[1, 0] = 255
    #  mask[2, 0] = 255
    #  mask[2, 2] = 255
    #  mask[2, 4] = 255
    #  mask[3, 0] = 255
    #  mask = ndimage.gaussian_filter(mask, 1.0, mode="mirror")
    aug = iaa.GaussianBlur(sigma=0.6)

    mask_bool = np.float64([[57, 14, 2, 1, 1], [142, 42, 29, 14, 28],
                            [169, 69, 114, 56, 114], [142, 42, 29, 14, 28],
                            [57, 14, 2, 1, 1]]) / 255.0

    image = np.zeros((5, 5), dtype=bool)
    image[1, 0] = True
    image[2, 0] = True
    image[2, 2] = True
    image[2, 4] = True
    image[3, 0] = True
    image_aug = aug.augment_image(image)
    expected = mask_bool > 0.5
    assert image_aug.shape == mask_bool.shape
    assert image_aug.dtype.type == np.bool_
    assert np.all(image_aug == expected)

    # --
    # blur of various dtypes at sigma=1.0
    # and using an example value of 100 for int/uint/float and True for bool
    # --
    # prototype kernel, generated via:
    #  mask = np.zeros((5, 5), dtype=np.float64)
    #  mask[2, 2] = 100
    #  mask = ndimage.gaussian_filter(mask, 1.0, mode="mirror")
    aug = iaa.GaussianBlur(sigma=1.0)

    mask = np.float64([[1, 2, 3, 2, 1], [2, 5, 9, 5, 2], [4, 9, 15, 9, 4],
                       [2, 5, 9, 5, 2], [1, 2, 3, 2, 1]])

    # uint, int
    for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]:
        image = np.zeros((5, 5), dtype=dtype)
        image[2, 2] = 100
        image_aug = aug.augment_image(image)
        expected = mask.astype(dtype)
        diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64))
        assert image_aug.shape == mask.shape
        assert image_aug.dtype.type == dtype
        assert np.max(diff) <= 4
        assert np.average(diff) <= 2

    # float
    for dtype in [np.float16, np.float32, np.float64]:
        image = np.zeros((5, 5), dtype=dtype)
        image[2, 2] = 100.0
        image_aug = aug.augment_image(image)
        expected = mask.astype(dtype)
        diff = np.abs(
            image_aug.astype(np.float128) - expected.astype(np.float128))
        assert image_aug.shape == mask.shape
        assert image_aug.dtype.type == dtype
        assert np.max(diff) < 4
        assert np.average(diff) < 2.0

    # --
    # blur of various dtypes at sigma=0.4
    # and using an example value of 100 for int/uint/float and True for bool
    # --
    aug = iaa.GaussianBlur(sigma=0.4)

    # prototype kernel, generated via:
    #  mask = np.zeros((5, 5), dtype=np.uint8)
    #  mask[2, 2] = 100
    #  kernel = ndimage.gaussian_filter(mask, 0.4, mode="mirror")
    mask = np.float64([[0, 0, 0, 0, 0], [0, 0, 3, 0, 0], [0, 3, 83, 3, 0],
                       [0, 0, 3, 0, 0], [0, 0, 0, 0, 0]])

    # uint, int
    for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]:
        image = np.zeros((5, 5), dtype=dtype)
        image[2, 2] = 100
        image_aug = aug.augment_image(image)
        expected = mask.astype(dtype)
        diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64))
        assert image_aug.shape == mask.shape
        assert image_aug.dtype.type == dtype
        assert np.max(diff) <= 4

    # float
    for dtype in [np.float16, np.float32, np.float64]:
        image = np.zeros((5, 5), dtype=dtype)
        image[2, 2] = 100.0
        image_aug = aug.augment_image(image)
        expected = mask.astype(dtype)
        diff = np.abs(
            image_aug.astype(np.float128) - expected.astype(np.float128))
        assert image_aug.shape == mask.shape
        assert image_aug.dtype.type == dtype
        assert np.max(diff) < 4.0

    # --
    # blur of various dtypes at sigma=0.75
    # and values being half-way between center and maximum for each dtype
    # The goal of this test is to verify that no major loss of resolution happens for large dtypes.
    # Such inaccuracies appear for float64 if used.
    # --
    aug = iaa.GaussianBlur(sigma=0.75)

    # prototype kernel, generated via:
    # mask = np.zeros((5, 5), dtype=np.int32)
    # mask[2, 2] = 1000 * 1000
    # kernel = ndimage.gaussian_filter(mask, 0.75)
    mask = np.float64([[923, 6650, 16163, 6650, 923],
                       [6650, 47896, 116408, 47896, 6650],
                       [16163, 116408, 282925, 116408, 16163],
                       [6650, 47896, 116408, 47896, 6650],
                       [923, 6650, 16163, 6650, 923]]) / (1000.0 * 1000.0)

    # uint, int
    for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]:
        min_value, center_value, max_value = iadt.get_value_range_of_dtype(
            dtype)
        dynamic_range = max_value - min_value

        value = int(center_value + 0.4 * max_value)
        image = np.zeros((5, 5), dtype=dtype)
        image[2, 2] = value
        image_aug = aug.augment_image(image)
        expected = (mask * value).astype(dtype)
        diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64))
        assert image_aug.shape == mask.shape
        assert image_aug.dtype.type == dtype
        if np.dtype(dtype).itemsize <= 1:
            assert np.max(diff) <= 4
        else:
            assert np.max(diff) <= 0.01 * dynamic_range

    # float
    for dtype, value in zip([np.float16, np.float32, np.float64],
                            [5000, 1000 * 1000, 1000 * 1000 * 1000]):
        image = np.zeros((5, 5), dtype=dtype)
        image[2, 2] = value
        image_aug = aug.augment_image(image)
        expected = (mask * value).astype(dtype)
        diff = np.abs(
            image_aug.astype(np.float128) - expected.astype(np.float128))
        assert image_aug.shape == mask.shape
        assert image_aug.dtype.type == dtype
        # accepts difference of 2.0, 4.0, 8.0, 16.0 (at 1, 2, 4, 8 bytes, i.e. 8, 16, 32, 64 bit)
        assert np.max(
            diff) < np.dtype(dtype).itemsize * 0.01 * np.float128(value)

    # assert failure on invalid dtypes
    aug = iaa.GaussianBlur(sigma=1.0)
    for dt in [np.float128]:
        got_exception = False
        try:
            _ = aug.augment_image(np.zeros((1, 1), dtype=dt))
        except Exception as exc:
            assert "forbidden dtype" in str(exc)
            got_exception = True
        assert got_exception