예제 #1
0
    def draw_row(self, title, images, subtitles):
        title_cell = np.zeros(
            (self.cell_height, self.title_cell_width, 3), dtype=np.uint8) + 255
        title_cell = ia.draw_text(title_cell,
                                  x=2,
                                  y=12,
                                  text=title,
                                  color=[0, 0, 0],
                                  size=16)

        image_cells = []
        for image, subtitle in zip(images, subtitles):
            image_cell = np.zeros(
                (self.cell_height, self.cell_width, 3), dtype=np.uint8) + 255
            image_cell[0:image.shape[0], 0:image.shape[1], :] = image
            image_cell = ia.draw_text(image_cell,
                                      x=2,
                                      y=image.shape[0] + 2,
                                      text=subtitle,
                                      color=[0, 0, 0],
                                      size=11)
            image_cells.append(image_cell)

        row = np.hstack([title_cell] + image_cells)
        return row
예제 #2
0
    def draw_row(self, title, images, subtitles):
        title_cell = np.zeros((self.cell_height, self.title_cell_width, 3), dtype=np.uint8) + 255
        title_cell = ia.draw_text(title_cell, x=2, y=12, text=title, color=[0, 0, 0], size=16)

        image_cells = []
        for image, subtitle in zip(images, subtitles):
            image_cell = np.zeros((self.cell_height, self.cell_width, 3), dtype=np.uint8) + 255
            image_cell[0:image.shape[0], 0:image.shape[1], :] = image
            image_cell = ia.draw_text(image_cell, x=2, y=image.shape[0]+2, text=subtitle, color=[0, 0, 0], size=11)
            image_cells.append(image_cell)

        row = np.hstack([title_cell] + image_cells)
        return row
예제 #3
0
def main():
    image = data.astronaut()
    print("image shape:", image.shape)
    print("Press any key or wait %d ms to proceed to the next image." %
          (TIME_PER_STEP, ))

    children_all = [("hflip", iaa.Fliplr(1)), ("add", iaa.Add(50)),
                    ("dropout", iaa.Dropout(0.2)),
                    ("affine", iaa.Affine(rotate=35))]

    channels_all = [None, 0, [], [0], [0, 1], [1, 2], [0, 1, 2]]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.imshow("aug", image[..., ::-1])
    cv2.waitKey(TIME_PER_STEP)

    for children_title, children in children_all:
        for channels in channels_all:
            aug = iaa.WithChannels(channels=channels, children=children)
            img_aug = aug.augment_image(image)
            print("dtype", img_aug.dtype, "averages",
                  np.average(img_aug, axis=tuple(range(0, img_aug.ndim - 1))))
            #print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))

            title = "children=%s | channels=%s" % (children_title, channels)
            img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)

            cv2.imshow("aug", img_aug[..., ::-1])  # here with rgb2bgr
            cv2.waitKey(TIME_PER_STEP)
예제 #4
0
def load_images(n_batches=10, sleep=0.0, draw_text=True):
    batch_size = 4
    astronaut = data.astronaut()
    astronaut = ia.imresize_single_image(astronaut, (64, 64))
    kps = ia.KeypointsOnImage([ia.Keypoint(x=15, y=25)], shape=astronaut.shape)

    counter = 0
    for i in range(n_batches):
        if draw_text:
            batch_images = []
            batch_kps = []
            for b in range(batch_size):
                astronaut_text = ia.draw_text(astronaut, x=0, y=0, text="%d" % (counter,), color=[0, 255, 0], size=16)
                batch_images.append(astronaut_text)
                batch_kps.append(kps)
                counter += 1
            batch = ia.Batch(
                images=np.array(batch_images, dtype=np.uint8),
                keypoints=batch_kps
            )
        else:
            if i == 0:
                batch_images = np.array([np.copy(astronaut) for _ in range(batch_size)], dtype=np.uint8)

            batch = ia.Batch(
                images=np.copy(batch_images),
                keypoints=[kps.deepcopy() for _ in range(batch_size)]
            )
        yield batch
        if sleep > 0:
            time.sleep(sleep)
예제 #5
0
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (64, 64))
    print("image shape:", image.shape)
    print("Press any key or wait %d ms to proceed to the next image." %
          (TIME_PER_STEP, ))

    k = [1, 3, 5, 7, (3, 3), (1, 11)]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("aug", 64 * NB_AUGS_PER_IMAGE, 64)
    #cv2.imshow("aug", image[..., ::-1])
    #cv2.waitKey(TIME_PER_STEP)

    for ki in k:
        aug = iaa.MedianBlur(k=ki)
        img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
        img_aug = np.hstack(img_aug)
        print("dtype", img_aug.dtype, "averages",
              np.average(img_aug, axis=tuple(range(0, img_aug.ndim - 1))))
        #print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))

        title = "k=%s" % (str(ki), )
        img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)

        cv2.imshow("aug", img_aug[..., ::-1])  # here with rgb2bgr
        cv2.waitKey(TIME_PER_STEP)
 def draw_bar(frac, key, h=30, w=20, margin_right=15):
     bar = np.zeros((h, 1), dtype=np.uint8) + 32
     bar[0:int(h * frac) + 1] = 255
     bar = np.flipud(bar)
     bar = np.tile(bar[:, :, np.newaxis], (1, w, 3))
     bar = np.pad(bar, ((20, 30), (0, margin_right), (0, 0)),
                  mode="constant",
                  constant_values=0)
     textx = 5
     if frac * 100 >= 10:
         textx = textx - 3
     elif frac * 100 >= 100:
         textx = textx - 6
     bar = ia.draw_text(bar,
                        x=textx,
                        y=2,
                        text="%.0f%%" % (frac * 100, ),
                        size=8,
                        color=[255, 255, 255])
     keyimg = draw_key(key)
     util.draw_image(bar,
                     x=(w // 2) - keyimg.shape[1] // 2,
                     y=bar.shape[0] - keyimg.shape[0] - 8,
                     other_img=keyimg,
                     copy=False)
     return bar
예제 #7
0
def load_images(n_batches=10, sleep=0.0, draw_text=True):
    batch_size = 4
    astronaut = data.astronaut()
    astronaut = ia.imresize_single_image(astronaut, (64, 64))
    kps = ia.KeypointsOnImage([ia.Keypoint(x=15, y=25)], shape=astronaut.shape)

    counter = 0
    for i in range(n_batches):
        if draw_text:
            batch_images = []
            batch_kps = []
            for b in range(batch_size):
                astronaut_text = ia.draw_text(astronaut,
                                              x=0,
                                              y=0,
                                              text="%d" % (counter, ),
                                              color=[0, 255, 0],
                                              size=16)
                batch_images.append(astronaut_text)
                batch_kps.append(kps)
                counter += 1
            batch = ia.Batch(images=np.array(batch_images, dtype=np.uint8),
                             keypoints=batch_kps)
        else:
            if i == 0:
                batch_images = np.array(
                    [np.copy(astronaut) for _ in range(batch_size)],
                    dtype=np.uint8)

            batch = ia.Batch(
                images=np.copy(batch_images),
                keypoints=[kps.deepcopy() for _ in range(batch_size)])
        yield batch
        if sleep > 0:
            time.sleep(sleep)
def generate_imgcorruptlike():
    ia.seed(1)

    image = ia.quokka((128, 128))
    images_aug = []
    augnames = [
        "Original", "GaussianNoise", "ShotNoise", "ImpulseNoise",
        "SpeckleNoise", "GaussianBlur", "GlassBlur", "DefocusBlur",
        "MotionBlur", "ZoomBlur", "Fog", "Frost", "Snow", "Spatter",
        "Contrast", "Brightness", "Saturate", "JpegCompression", "Pixelate",
        "ElasticTransform"
    ]

    for augname in augnames:
        if augname == "Original":
            image_aug = np.copy(image)
        else:
            aug = getattr(iaa.imgcorruptlike, augname)
            image_aug = aug(severity=3)(image=image)
        image_aug = iaa.pad(image_aug, top=30, cval=255)
        image_aug = ia.draw_text(image_aug,
                                 y=6,
                                 x=2,
                                 text=augname,
                                 color=(0, 0, 0),
                                 size=15)
        images_aug.append(image_aug)

    _save("imgcorruptlike.jpg", ia.draw_grid(images_aug, cols=5, rows=4))
def main():
    image = data.astronaut()

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.imshow("aug", image)
    cv2.waitKey(TIME_PER_STEP)

    # for value in cycle(np.arange(-255, 255, VAL_PER_STEP)):
    for value in np.arange(-255, 255, VAL_PER_STEP):
        aug = iaa.AddToHueAndSaturation(value=value)
        img_aug = aug.augment_image(image)
        img_aug = iaa.pad(img_aug, bottom=40)
        img_aug = ia.draw_text(img_aug,
                               x=0,
                               y=img_aug.shape[0] - 38,
                               text="value=%d" % (value, ),
                               size=30)

        cv2.imshow("aug", img_aug)
        cv2.waitKey(TIME_PER_STEP)

    images_aug = iaa.AddToHueAndSaturation(
        value=(-255, 255), per_channel=True).augment_images([image] * 64)
    ia.imshow(ia.draw_grid(images_aug))

    image = ia.quokka_square((128, 128))
    images_aug = []
    images_aug.extend(iaa.AddToHue().augment_images([image] * 10))
    images_aug.extend(iaa.AddToSaturation().augment_images([image] * 10))
    ia.imshow(ia.draw_grid(images_aug, rows=2))
예제 #10
0
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (64, 64))
    print("image shape:", image.shape)
    print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))

    k = [
        1,
        3,
        5,
        7,
        (3, 3),
        (1, 11)
    ]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, 64)

    for ki in k:
        aug = iaa.MedianBlur(k=ki)
        img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
        img_aug = np.hstack(img_aug)
        print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))

        title = "k=%s" % (str(ki),)
        img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)

        cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
        cv2.waitKey(TIME_PER_STEP)
예제 #11
0
    def draw_box(image, bbs):
        """ 绘制图片以及对应的bounding box

        Args:
            img: numpy array
            boxes: BoundingBoxesOnImage对象
        """
        image *= 255.0
        for bound_box in bbs.bounding_boxes:
            x_center = bound_box.center_x
            y_center = bound_box.center_y
            _class = CLASS[bound_box.label]
            image = bound_box.draw_on_image(image,
                                            color=Colors_to_map[_class],
                                            alpha=0.7,
                                            thickness=2,
                                            raise_if_out_of_image=True)
            image = ia.draw_text(image,
                                 y=y_center,
                                 x=x_center - 20,
                                 color=Colors_to_map[_class],
                                 text=_class)
        plt.imshow(image)
        plt.title("Iamge size >>> {}".format(image.shape))
        plt.axis('off')
        plt.xticks([])
        plt.yticks([])
        plt.show()
def main():
    image = data.astronaut()[..., ::-1]  # rgb2bgr
    print(image.shape)

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.imshow("aug", image)
    cv2.waitKey(TIME_PER_STEP)

    for n_segments in cycle(reversed(np.arange(1, 200, SEGMENTS_PER_STEP))):
        aug = iaa.Superpixels(p_replace=0.75, n_segments=n_segments)
        time_start = time.time()
        img_aug = aug.augment_image(image)
        print("augmented %d in %.4fs" % (n_segments, time.time() - time_start))
        img_aug = ia.draw_text(img_aug, x=5, y=5, text="%d" % (n_segments, ))

        cv2.imshow("aug", img_aug)
        cv2.waitKey(TIME_PER_STEP)
예제 #13
0
def main():
    image = data.astronaut()[...,::-1] # rgb2bgr
    print(image.shape)

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.imshow("aug", image)
    cv2.waitKey(TIME_PER_STEP)

    for n_segments in cycle(reversed(np.arange(1, 200, SEGMENTS_PER_STEP))):
        aug = iaa.Superpixels(p_replace=0.75, n_segments=n_segments)
        time_start = time.time()
        img_aug = aug.augment_image(image)
        print("augmented %d in %.4fs" % (n_segments, time.time() - time_start))
        img_aug = ia.draw_text(img_aug, x=5, y=5, text="%d" % (n_segments,))

        cv2.imshow("aug", img_aug)
        cv2.waitKey(TIME_PER_STEP)
예제 #14
0
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (128, 128))
    print("image shape:", image.shape)
    print("Press any key or wait %d ms to proceed to the next image." %
          (TIME_PER_STEP, ))

    configs = [
        (1, 75, 75),
        (3, 75, 75),
        (5, 75, 75),
        (10, 75, 75),
        (10, 25, 25),
        (10, 250, 150),
        (15, 75, 75),
        (15, 150, 150),
        (15, 250, 150),
        (20, 75, 75),
        (40, 150, 150),
        ((1, 5), 75, 75),
        (5, (10, 250), 75),
        (5, 75, (10, 250)),
        (5, (10, 250), (10, 250)),
        (10, (10, 250), (10, 250)),
    ]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("aug", 128 * NB_AUGS_PER_IMAGE, 128)

    for (d, sigma_color, sigma_space) in configs:
        aug = iaa.BilateralBlur(d=d,
                                sigma_color=sigma_color,
                                sigma_space=sigma_space)

        img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
        img_aug = np.hstack(img_aug)
        print("dtype", img_aug.dtype, "averages",
              np.average(img_aug, axis=tuple(range(0, img_aug.ndim - 1))))

        title = "d=%s, sc=%s, ss=%s" % (str(d), str(sigma_color),
                                        str(sigma_space))
        img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)

        cv2.imshow("aug", img_aug[..., ::-1])  # here with rgb2bgr
        cv2.waitKey(TIME_PER_STEP)
def main():
    image = data.astronaut()

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.imshow("aug", image)
    cv2.waitKey(TIME_PER_STEP)

    # for value in cycle(np.arange(-255, 255, VAL_PER_STEP)):
    for value in np.arange(-255, 255, VAL_PER_STEP):
        aug = iaa.AddToHueAndSaturation(value=value)
        img_aug = aug.augment_image(image)
        img_aug = ia.pad(img_aug, bottom=40)
        img_aug = ia.draw_text(img_aug, x=0, y=img_aug.shape[0]-38, text="value=%d" % (value,), size=30)

        cv2.imshow("aug", img_aug)
        cv2.waitKey(TIME_PER_STEP)

    images_aug = iaa.AddToHueAndSaturation(value=(-255, 255), per_channel=True).augment_images([image] * 64)
    ia.imshow(ia.draw_grid(images_aug))
예제 #16
0
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (128, 128))
    print("image shape:", image.shape)
    print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))

    configs = [
        (1, 75, 75),
        (3, 75, 75),
        (5, 75, 75),
        (10, 75, 75),
        (10, 25, 25),
        (10, 250, 150),
        (15, 75, 75),
        (15, 150, 150),
        (15, 250, 150),
        (20, 75, 75),
        (40, 150, 150),
        ((1, 5), 75, 75),
        (5, (10, 250), 75),
        (5, 75, (10, 250)),
        (5, (10, 250), (10, 250)),
        (10, (10, 250), (10, 250)),
    ]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("aug", 128*NB_AUGS_PER_IMAGE, 128)

    for (d, sigma_color, sigma_space) in configs:
        aug = iaa.BilateralBlur(d=d, sigma_color=sigma_color, sigma_space=sigma_space)

        img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
        img_aug = np.hstack(img_aug)
        print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))

        title = "d=%s, sc=%s, ss=%s" % (str(d), str(sigma_color), str(sigma_space))
        img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)

        cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
        cv2.waitKey(TIME_PER_STEP)
def load_images():
    batch_size = 4
    astronaut = data.astronaut()
    astronaut = ia.imresize_single_image(astronaut, (64, 64))
    kps = ia.KeypointsOnImage([ia.Keypoint(x=15, y=25)], shape=astronaut.shape)
    counter = 0
    for i in range(10):
        batch_images = []
        batch_kps = []
        for b in range(batch_size):
            astronaut_text = ia.draw_text(astronaut,
                                          x=0,
                                          y=0,
                                          text="%d" % (counter, ),
                                          color=[0, 255, 0],
                                          size=16)
            batch_images.append(astronaut_text)
            batch_kps.append(kps)
            counter += 1
        batch = ia.Batch(images=np.array(batch_images, dtype=np.uint8),
                         keypoints=batch_kps)
        yield batch
예제 #18
0
def main():
    image = data.astronaut()
    print("image shape:", image.shape)
    print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))

    children_all = [
        ("hflip", iaa.Fliplr(1)),
        ("add", iaa.Add(50)),
        ("dropout", iaa.Dropout(0.2)),
        ("affine", iaa.Affine(rotate=35))
    ]

    channels_all = [
        None,
        0,
        [],
        [0],
        [0, 1],
        [1, 2],
        [0, 1, 2]
    ]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.imshow("aug", image[..., ::-1])
    cv2.waitKey(TIME_PER_STEP)

    for children_title, children in children_all:
        for channels in channels_all:
            aug = iaa.WithChannels(channels=channels, children=children)
            img_aug = aug.augment_image(image)
            print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
            #print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))

            title = "children=%s | channels=%s" % (children_title, channels)
            img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)

            cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
            cv2.waitKey(TIME_PER_STEP)
예제 #19
0
def chapter_examples_bounding_boxes_iou():
    import numpy as np
    import imgaug as ia
    from imgaug.augmentables.bbs import BoundingBox

    ia.seed(1)

    # Define image with two bounding boxes.
    image = ia.quokka(size=(256, 256))
    bb1 = BoundingBox(x1=50, x2=100, y1=25, y2=75)
    bb2 = BoundingBox(x1=75, x2=125, y1=50, y2=100)

    # Compute intersection, union and IoU value
    # Intersection and union are both bounding boxes. They are here
    # decreased/increased in size purely for better visualization.
    bb_inters = bb1.intersection(bb2).extend(all_sides=-1)
    bb_union = bb1.union(bb2).extend(all_sides=2)
    iou = bb1.iou(bb2)

    # Draw bounding boxes, intersection, union and IoU value on image.
    image_bbs = np.copy(image)
    image_bbs = bb1.draw_on_image(image_bbs, size=2, color=[0, 255, 0])
    image_bbs = bb2.draw_on_image(image_bbs, size=2, color=[0, 255, 0])
    image_bbs = bb_inters.draw_on_image(image_bbs, size=2, color=[255, 0, 0])
    image_bbs = bb_union.draw_on_image(image_bbs, size=2, color=[0, 0, 255])
    image_bbs = ia.draw_text(image_bbs,
                             text="IoU=%.2f" % (iou, ),
                             x=bb_union.x2 + 10,
                             y=bb_union.y1 + bb_union.height // 2,
                             color=[255, 255, 255],
                             size=13)

    # ------------

    save("examples_bounding_boxes",
         "iou.jpg",
         grid([image_bbs], cols=1, rows=1),
         quality=90)
예제 #20
0
파일: train.py 프로젝트: andygoosh/cat-bbs
def generate_video_image(batch_idx, examples, model):
    """Generate frames for a video of the training progress.
    Each frame contains N examples shown in a grid. Each example shows
    the input image and the main heatmap predicted by the model."""
    start_time = time.time()
    #print("A", time.time() - start_time)
    model.eval()

    # fw through network
    inputs, outputs_gt = examples_to_batch(examples, iaa.Noop())
    inputs_torch = torch.from_numpy(inputs)
    inputs_torch = Variable(inputs_torch, volatile=True)
    if GPU >= 0:
        inputs_torch = inputs_torch.cuda(GPU)
    outputs_pred_torch = model(inputs_torch)
    #print("B", time.time() - start_time)

    outputs_pred = outputs_pred_torch.cpu().data.numpy()
    inputs = (inputs * 255).astype(np.uint8).transpose(0, 2, 3, 1)
    #print("C", time.time() - start_time)
    heatmaps = []
    for i in range(inputs.shape[0]):
        hm_drawn = draw_heatmap(inputs[i],
                                np.squeeze(outputs_pred[i][0]),
                                alpha=0.5)
        heatmaps.append(hm_drawn)
    #print("D", time.time() - start_time)
    grid = ia.draw_grid(heatmaps, cols=11, rows=6).astype(np.uint8)
    #grid_rs = misc.imresize(grid, (720-32, 1280-32))
    # pad by 42 for the text and to get the image to 720p aspect ratio
    grid_pad = np.pad(grid, ((0, 42), (0, 0), (0, 0)), mode="constant")
    grid_pad_text = ia.draw_text(grid_pad,
                                 x=grid_pad.shape[1] - 220,
                                 y=grid_pad.shape[0] - 35,
                                 text="Batch %05d" % (batch_idx, ),
                                 color=[255, 255, 255])
    #print("E", time.time() - start_time)
    return grid_pad_text
예제 #21
0
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (64, 64))
    keypoints_on_image = ia.KeypointsOnImage([ia.Keypoint(x=10, y=10, vis=None, label=None)], shape=image.shape)
    images_arr = np.array([image for _ in range(NB_AUGS_PER_IMAGE)])
    images_list = [image for _ in range(NB_AUGS_PER_IMAGE)]
    keypoints_on_images = [keypoints_on_image.deepcopy() for _ in range(NB_AUGS_PER_IMAGE)]
    print("image shape:", image.shape)
    print("Press ENTER or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))

    children = [
        iaa.CoarseDropout(p=0.5, size_percent=0.05),
        iaa.AdditiveGaussianNoise(scale=0.1*255)
    ]

    n = [
        None,
        0,
        1,
        len(children),
        len(children)+1,
        (1, 1),
        (1, len(children)),
        (1, len(children)+1),
        (1, None)
    ]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, (2+4+4)*64)

    rows = []
    for ni in n:
        aug = iaa.SomeOf(ni, children, random_order=False)
        rows.append(aug.augment_images(images_arr))
    grid = to_grid(rows, None)
    cv2.imshow("aug", grid[..., ::-1])  # here with rgb2bgr
    cv2.waitKey(TIME_PER_STEP)

    for ni in n:
        print("------------------------")
        print("-- %s" % (str(ni),))
        print("------------------------")
        aug = iaa.SomeOf(ni, children, random_order=False)
        aug_ro = iaa.SomeOf(ni, children, random_order=True)

        aug_det = aug.to_deterministic()
        aug_ro_det = aug_ro.to_deterministic()

        aug_kps = []
        aug_kps.extend([aug_det.augment_keypoints(keypoints_on_images)] * 4)
        aug_kps.extend([aug_ro_det.augment_keypoints(keypoints_on_images)] * 4)

        aug_rows = []
        aug_rows.append(images_arr)
        aug_rows.append(images_list)

        aug_rows.append(aug_det.augment_images(images_arr))
        aug_rows.append(aug_det.augment_images(images_arr))
        aug_rows.append(aug_det.augment_images(images_list))
        aug_rows.append(aug_det.augment_images(images_list))

        aug_rows.append(aug_ro_det.augment_images(images_arr))
        aug_rows.append(aug_ro_det.augment_images(images_arr))
        aug_rows.append(aug_ro_det.augment_images(images_list))
        aug_rows.append(aug_ro_det.augment_images(images_list))

        grid = to_grid(aug_rows, aug_kps)

        title = "n=%s" % (str(ni),)
        grid = ia.draw_text(grid, x=5, y=5, text=title)

        cv2.imshow("aug", grid[..., ::-1]) # here with rgb2bgr
        cv2.waitKey(TIME_PER_STEP)
예제 #22
0
def chapter_alpha_masks_frequency():
    # -----------------------------------------
    # example 1 (basic)
    # -----------------------------------------
    import imgaug as ia
    from imgaug import augmenters as iaa
    from imgaug import parameters as iap

    ia.seed(1)

    # Example batch of images.
    # The array has shape (8, 64, 64, 3) and dtype uint8.
    images = np.array([ia.quokka(size=(128, 128)) for _ in range(8)],
                      dtype=np.uint8)

    seq = iaa.BlendAlphaFrequencyNoise(
        foreground=iaa.Multiply(iap.Choice([0.5, 1.5]), per_channel=True))

    images_aug = seq(images=images)

    # ------------

    save("alpha", "alpha_frequency_example_basic.jpg",
         grid(images_aug, cols=4, rows=2))

    # -----------------------------------------
    # example 1 (per_channel)
    # -----------------------------------------
    import imgaug as ia
    from imgaug import augmenters as iaa

    ia.seed(1)

    # Example batch of images.
    # The array has shape (8, 128, 128, 3) and dtype uint8.
    images = np.array([ia.quokka(size=(128, 128)) for _ in range(8)],
                      dtype=np.uint8)

    seq = iaa.BlendAlphaFrequencyNoise(foreground=iaa.EdgeDetect(1.0),
                                       per_channel=True)

    images_aug = seq(images=images)

    # ------------

    save("alpha", "alpha_frequency_example_per_channel.jpg",
         grid(images_aug, cols=4, rows=2))

    # -----------------------------------------
    # noise masks
    # -----------------------------------------
    import imgaug as ia
    from imgaug import augmenters as iaa
    from imgaug import parameters as iap

    seed = 1
    ia.seed(seed)

    seq = iaa.BlendAlphaFrequencyNoise(
        foreground=iaa.Multiply(iap.Choice([0.5, 1.5]), per_channel=True))

    masks = [
        seq.factor.draw_samples((64, 64),
                                random_state=ia.new_random_state(seed + 1 + i))
        for i in range(16)
    ]
    masks = [np.tile(mask[:, :, np.newaxis], (1, 1, 3)) for mask in masks]
    masks = [(mask * 255).astype(np.uint8) for mask in masks]

    # ------------

    save("alpha", "alpha_frequency_noise_masks.jpg", grid(masks,
                                                          cols=8,
                                                          rows=2))

    # -----------------------------------------
    # noise masks, varying exponent
    # -----------------------------------------
    import imgaug as ia
    from imgaug import augmenters as iaa
    from imgaug import parameters as iap

    seed = 1
    ia.seed(seed)

    masks = []
    nb_rows = 4
    exponents = np.linspace(-4.0, 4.0, 16)

    for i, exponent in enumerate(exponents):
        seq = iaa.BlendAlphaFrequencyNoise(exponent=exponent,
                                           foreground=iaa.Multiply(
                                               iap.Choice([0.5, 1.5]),
                                               per_channel=True),
                                           size_px_max=32,
                                           upscale_method="linear",
                                           iterations=1,
                                           sigmoid=False)

        group = []
        for row in range(nb_rows):
            mask = seq.factor.draw_samples(
                (64, 64),
                random_state=ia.new_random_state(seed + 1 + i * 10 + row))
            mask = np.tile(mask[:, :, np.newaxis], (1, 1, 3))
            mask = (mask * 255).astype(np.uint8)
            if row == nb_rows - 1:
                mask = np.pad(mask, ((0, 20), (0, 0), (0, 0)),
                              mode="constant",
                              constant_values=255)
                mask = ia.draw_text(mask,
                                    y=64 + 2,
                                    x=6,
                                    text="%.2f" % (exponent, ),
                                    size=10,
                                    color=[0, 0, 0])
            group.append(mask)
        masks.append(np.vstack(group))

    # ------------

    save("alpha", "alpha_frequency_noise_masks_exponents.jpg",
         grid(masks, cols=16, rows=1))

    # -----------------------------------------
    # noise masks, upscale=nearest
    # -----------------------------------------
    import imgaug as ia
    from imgaug import augmenters as iaa
    from imgaug import parameters as iap

    seed = 1
    ia.seed(seed)

    seq = iaa.BlendAlphaFrequencyNoise(foreground=iaa.Multiply(
        iap.Choice([0.5, 1.5]), per_channel=True),
                                       upscale_method="nearest")

    masks = [
        seq.factor.draw_samples((64, 64),
                                random_state=ia.new_random_state(seed + 1 + i))
        for i in range(16)
    ]
    masks = [np.tile(mask[:, :, np.newaxis], (1, 1, 3)) for mask in masks]
    masks = [(mask * 255).astype(np.uint8) for mask in masks]

    # ------------

    save("alpha", "alpha_frequency_noise_masks_nearest.jpg",
         grid(masks, cols=8, rows=2))

    # -----------------------------------------
    # noise masks linear
    # -----------------------------------------
    import imgaug as ia
    from imgaug import augmenters as iaa
    from imgaug import parameters as iap

    seed = 1
    ia.seed(seed)

    seq = iaa.BlendAlphaFrequencyNoise(foreground=iaa.Multiply(
        iap.Choice([0.5, 1.5]), per_channel=True),
                                       upscale_method="linear")

    masks = [
        seq.factor.draw_samples((64, 64),
                                random_state=ia.new_random_state(seed + 1 + i))
        for i in range(16)
    ]
    masks = [np.tile(mask[:, :, np.newaxis], (1, 1, 3)) for mask in masks]
    masks = [(mask * 255).astype(np.uint8) for mask in masks]

    # ------------

    save("alpha", "alpha_frequency_noise_masks_linear.jpg",
         grid(masks, cols=8, rows=2))
예제 #23
0
def create_bb_img(input_lst_path,
                  input_img_root_path,
                  output_img_path,
                  class_list=[]):
    """
    画像データにlstファイルに基づくバウンディングボックスを加工した画像をつうる
    """

    import random
    import copy
    import os
    from os import path
    import shutil
    from PIL import Image
    import numpy as np
    import imgaug as ia
    from tqdm import tqdm_notebook as tqdm

    # 出力先をリセット
    if path.isdir(output_img_path):
        shutil.rmtree(output_img_path)

    os.makedirs(output_img_path)

    with open(input_lst_path) as lst_f:
        for line in tqdm(lst_f.readlines()):
            line = line.strip()
            if not line: continue

            #lst形式のデータを読み取って、変数に入れる
            origin_img_index, header_size, label_width, label_data, img_path = __read_lst(
                line)
            img_path = path.join(input_img_root_path, img_path)

            # 画像を読み込む
            origin_img = Image.open(img_path).convert('RGB')
            img_height = origin_img.height
            img_width = origin_img.width
            max_edge = max(img_height, img_width)

            # 画像を変換する
            target_img = np.array(origin_img)

            # バウンディングボックスを生成
            bbs = []
            for bb_index in range(len(label_data) // label_width):

                bb = ia.BoundingBox(
                    x1=float(label_data[bb_index * label_width + 1]) *
                    img_width,
                    y1=float(label_data[bb_index * label_width + 2]) *
                    img_height,
                    x2=float(label_data[bb_index * label_width + 3]) *
                    img_width,
                    y2=float(label_data[bb_index * label_width + 4]) *
                    img_height)
                class_val = int(label_data[bb_index * label_width])
                assert 0 <= class_val and class_val < len(
                    class_list), 'classの値が不正です。 : ' + str(class_val)
                class_name = class_list[class_val] if class_list[
                    class_val] else str(class_val)
                target_img = ia.draw_text(target_img, bb.y1, bb.x1, class_name)

                bbs.append(bb)

            bbs_on_img = ia.BoundingBoxesOnImage(bbs, shape=target_img.shape)

            after_bb_img = bbs_on_img.draw_on_image(target_img)
            output_img_name = path.basename(img_path)
            Image.fromarray(after_bb_img).save(
                path.join(output_img_path, output_img_name))
예제 #24
0
def chapter_alpha_masks_iterative():
    # -----------------------------------------
    # IterativeNoiseAggregator varying number of iterations
    # -----------------------------------------
    import imgaug as ia
    from imgaug import parameters as iap

    seed = 1
    ia.seed(seed)

    masks = []
    iterations_all = [1, 2, 3, 4]

    for iterations in iterations_all:
        noise = iap.IterativeNoiseAggregator(other_param=iap.FrequencyNoise(
            exponent=(-4.0, 4.0), upscale_method=["linear", "nearest"]),
                                             iterations=iterations,
                                             aggregation_method="max")

        row = [
            noise.draw_samples((64, 64),
                               random_state=ia.new_random_state(seed + 1 + i))
            for i in range(16)
        ]
        row = np.hstack(row)
        row = np.tile(row[:, :, np.newaxis], (1, 1, 3))
        row = (row * 255).astype(np.uint8)
        row = np.pad(row, ((0, 0), (50, 0), (0, 0)),
                     mode="constant",
                     constant_values=255)
        row = ia.draw_text(row,
                           y=24,
                           x=2,
                           text="%d iter." % (iterations, ),
                           size=14,
                           color=[0, 0, 0])
        masks.append(row)

    # ------------

    save("alpha", "iterative_vary_iterations.jpg",
         grid(masks, cols=1, rows=len(iterations_all)))

    # -----------------------------------------
    # IterativeNoiseAggregator varying methods
    # -----------------------------------------
    import imgaug as ia
    from imgaug import parameters as iap

    seed = 1
    ia.seed(seed)

    iterations_all = [1, 2, 3, 4, 5, 6]
    methods = ["min", "avg", "max"]
    cell_idx = 0
    rows = []

    for method_idx, method in enumerate(methods):
        row = []
        for iterations in iterations_all:
            noise = iap.IterativeNoiseAggregator(
                other_param=iap.FrequencyNoise(
                    exponent=-2.0,
                    size_px_max=32,
                    upscale_method=["linear", "nearest"]),
                iterations=iterations,
                aggregation_method=method)

            cell = noise.draw_samples(
                (64, 64),
                random_state=ia.new_random_state(seed + 1 + method_idx))
            cell = np.tile(cell[:, :, np.newaxis], (1, 1, 3))
            cell = (cell * 255).astype(np.uint8)

            if iterations == 1:
                cell = np.pad(cell, ((0, 0), (40, 0), (0, 0)),
                              mode="constant",
                              constant_values=255)
                cell = ia.draw_text(cell,
                                    y=27,
                                    x=2,
                                    text="%s" % (method, ),
                                    size=14,
                                    color=[0, 0, 0])
            if method_idx == 0:
                cell = np.pad(cell, ((20, 0), (0, 0), (0, 0)),
                              mode="constant",
                              constant_values=255)
                cell = ia.draw_text(cell,
                                    y=0,
                                    x=12 + 40 * (iterations == 1),
                                    text="%d iter." % (iterations, ),
                                    size=14,
                                    color=[0, 0, 0])
            cell = np.pad(cell, ((0, 1), (0, 1), (0, 0)),
                          mode="constant",
                          constant_values=255)

            row.append(cell)
            cell_idx += 1
        rows.append(np.hstack(row))
    gridarr = np.vstack(rows)

    # ------------

    save("alpha", "iterative_vary_methods.jpg", gridarr)
예제 #25
0
def chapter_alpha_masks_sigmoid():
    # -----------------------------------------
    # Sigmoid varying on/off
    # -----------------------------------------
    import imgaug as ia
    from imgaug import parameters as iap

    seed = 1
    ia.seed(seed)

    masks = []

    for activated in [False, True]:
        noise = iap.Sigmoid.create_for_noise(other_param=iap.FrequencyNoise(
            exponent=(-4.0, 4.0), upscale_method="linear"),
                                             activated=activated)

        row = [
            noise.draw_samples((64, 64),
                               random_state=ia.new_random_state(seed + 1 + i))
            for i in range(16)
        ]
        row = np.hstack(row)
        row = np.tile(row[:, :, np.newaxis], (1, 1, 3))
        row = (row * 255).astype(np.uint8)
        row = np.pad(row, ((0, 0), (90, 0), (0, 0)),
                     mode="constant",
                     constant_values=255)
        row = ia.draw_text(row,
                           y=17,
                           x=2,
                           text="activated=\n%s" % (activated, ),
                           size=14,
                           color=[0, 0, 0])
        masks.append(row)

    # ------------

    save("alpha", "sigmoid_vary_activated.jpg", grid(masks, cols=1, rows=2))

    # -----------------------------------------
    # Sigmoid varying on/off
    # -----------------------------------------
    import imgaug as ia
    from imgaug import parameters as iap

    seed = 1
    ia.seed(seed)

    masks = []
    nb_rows = 3

    class ConstantNoise(iap.StochasticParameter):
        def __init__(self, noise, seed):
            super(ConstantNoise, self).__init__()
            self.noise = noise
            self.seed = seed

        def _draw_samples(self, size, random_state):
            return self.noise.draw_samples(size,
                                           random_state=ia.new_random_state(
                                               self.seed))

    for rowidx in range(nb_rows):
        row = []
        for tidx, threshold in enumerate(np.linspace(-10.0, 10.0, 10)):
            noise = iap.Sigmoid.create_for_noise(other_param=ConstantNoise(
                iap.FrequencyNoise(exponent=(-4.0, 4.0),
                                   upscale_method="linear"),
                seed=seed + 100 + rowidx),
                                                 activated=True,
                                                 threshold=threshold)

            cell = noise.draw_samples(
                (64, 64), random_state=ia.new_random_state(seed + tidx))
            cell = np.tile(cell[:, :, np.newaxis], (1, 1, 3))
            cell = (cell * 255).astype(np.uint8)
            if rowidx == 0:
                cell = np.pad(cell, ((20, 0), (0, 0), (0, 0)),
                              mode="constant",
                              constant_values=255)
                cell = ia.draw_text(cell,
                                    y=2,
                                    x=15,
                                    text="%.1f" % (threshold, ),
                                    size=14,
                                    color=[0, 0, 0])
            row.append(cell)
        row = np.hstack(row)
        masks.append(row)

    gridarr = np.vstack(masks)
    # ------------

    save("alpha", "sigmoid_vary_threshold.jpg", gridarr)
예제 #26
0
 def draw(self, height, width):
     image = np.full((height, width, 3), 255, dtype=np.uint8)
     image = ia.draw_text(image, 0, 0, self.text, color=(0, 0, 0), size=12)
     return image
예제 #27
0
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (64, 64))
    keypoints_on_image = ia.KeypointsOnImage([ia.Keypoint(x=10, y=10)], shape=image.shape)
    images_arr = np.array([image for _ in range(NB_AUGS_PER_IMAGE)])
    images_list = [image for _ in range(NB_AUGS_PER_IMAGE)]
    keypoints_on_images = [keypoints_on_image.deepcopy() for _ in range(NB_AUGS_PER_IMAGE)]
    print("image shape:", image.shape)
    print("Press ENTER or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))

    children = [
        iaa.CoarseDropout(p=0.5, size_percent=0.05),
        iaa.AdditiveGaussianNoise(scale=0.1*255)
    ]

    n = [
        None,
        0,
        1,
        len(children),
        len(children)+1,
        (1, 1),
        (1, len(children)),
        (1, len(children)+1),
        (1, None)
    ]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, (2+4+4)*64)

    rows = []
    for ni in n:
        aug = iaa.SomeOf(ni, children, random_order=False)
        rows.append(aug.augment_images(images_arr))
    grid = to_grid(rows, None)
    cv2.imshow("aug", grid[..., ::-1])  # here with rgb2bgr
    cv2.waitKey(TIME_PER_STEP)

    for ni in n:
        print("------------------------")
        print("-- %s" % (str(ni),))
        print("------------------------")
        aug = iaa.SomeOf(ni, children, random_order=False)
        aug_ro = iaa.SomeOf(ni, children, random_order=True)

        aug_det = aug.to_deterministic()
        aug_ro_det = aug_ro.to_deterministic()

        aug_kps = []
        aug_kps.extend([aug_det.augment_keypoints(keypoints_on_images)] * 4)
        aug_kps.extend([aug_ro_det.augment_keypoints(keypoints_on_images)] * 4)

        aug_rows = []
        aug_rows.append(images_arr)
        aug_rows.append(images_list)

        aug_rows.append(aug_det.augment_images(images_arr))
        aug_rows.append(aug_det.augment_images(images_arr))
        aug_rows.append(aug_det.augment_images(images_list))
        aug_rows.append(aug_det.augment_images(images_list))

        aug_rows.append(aug_ro_det.augment_images(images_arr))
        aug_rows.append(aug_ro_det.augment_images(images_arr))
        aug_rows.append(aug_ro_det.augment_images(images_list))
        aug_rows.append(aug_ro_det.augment_images(images_list))

        grid = to_grid(aug_rows, aug_kps)

        title = "n=%s" % (str(ni),)
        grid = ia.draw_text(grid, x=5, y=5, text=title)

        cv2.imshow("aug", grid[..., ::-1]) # here with rgb2bgr
        cv2.waitKey(TIME_PER_STEP)
예제 #28
0
def main():
    # Configure imgaug
    ia.seed(1)

    #########################################################
    # Parse arguments
    #########################################################

    parser = argparse.ArgumentParser(
        description=
        'Applies a set of augmentations to every image in the input directory.'
    )
    parser.add_argument('--input_directory',
                        '-i',
                        type=str,
                        help='e.g. "./downloads/"')
    parser.add_argument('--output_directory',
                        '-o',
                        type=str,
                        help='e.g. "./downloads/"')
    parser.add_argument(
        '--single_threaded',
        '-s',
        action='store_true',
        help='Process images in one thread instead of multithreading')
    parser.add_argument('--preview_only',
                        '-p',
                        action='store_true',
                        help='Show previews instead of writing to disk')
    parser.add_argument(
        '--skip_originals',
        action='store_true',
        help=
        'Prevent original images from being copied into the destination folder'
    )

    args = parser.parse_args()

    input_directory = args.input_directory
    output_directory = args.output_directory
    user_requested_preview_only = args.preview_only
    single_threaded = args.single_threaded
    skip_originals = args.skip_originals

    #########################################################
    # Process all data files in the input directory, either
    # copying them over or queueing them to be augmented in
    # the next step.
    #########################################################

    # Load YOLO region class names from file
    class_names = []
    with open(os.path.join(input_directory, "class.names")) as class_file:
        class_names = [
            line.rstrip() for line in class_file if line.rstrip() != ""
        ]

    if not user_requested_preview_only:
        # Copy MyAugments.py to the output directory
        copyfile(os.path.join(os.getcwd(), "MyAugments.py"),
                 os.path.join(output_directory, "MyAugments.py"))
        # Copy the YOLO region class names file to the output directory
        copyfile(os.path.join(input_directory, "class.names"),
                 os.path.join(output_directory, "class.names"))

    augment_files = []

    filenames = os.listdir(input_directory)
    filenames.sort()
    for filename in filenames:

        # Work only on YOLO .txt files.
        if not filename.endswith(".txt"):
            continue

        base_filename = os.path.splitext(filename)[0]
        data_path = os.path.join(input_directory, base_filename + ".txt")
        image_path = os.path.join(input_directory, base_filename + ".jpg")
        augment_files.append(DataPair(data_path, image_path))

        if not skip_originals and not user_requested_preview_only:
            # Copy the original data file to the output directory.
            copyfile(os.path.join(input_directory, base_filename + ".txt"),
                     os.path.join(output_directory, base_filename + ".txt"))
            # Copy the original image to the output directory.
            copyfile(os.path.join(input_directory, base_filename + ".jpg"),
                     os.path.join(output_directory, base_filename + ".jpg"))

    #########################################################
    # From the list of data/image pairs to augment, create
    # batches for imgaug to process.
    #########################################################

    batch = []
    batches = []
    MAX_BATCH_SIZE = 10 if user_requested_preview_only else 16

    for i, item in enumerate(augment_files):
        # Load image into memory
        image = imageio.imread(item.image_path)
        # Get imgaug representation of bounding boxes
        image_data = ImageData.from_yolo_data(item.data_path, class_names)
        bbs = image_data.to_imgaug(image.shape)

        batch.append((image, bbs, item))

        # If we're at the max batch size or the end of the file list,
        # finalize the batch and add it to the batch list.
        if len(batch) == MAX_BATCH_SIZE or i == len(augment_files) - 1:
            images, bounding_boxes, data = list(zip(*batch))
            batches.append(
                UnnormalizedBatch(images=images,
                                  bounding_boxes=bounding_boxes,
                                  data=data))
            batch.clear()

    #########################################################
    # Apply each operation in MyAugments.py to each image
    #########################################################

    should_multithread = not single_threaded and not user_requested_preview_only

    ops = get_augmentation_operations()

    total_ops_per_image = sum([op.num_repetitions for op in ops])
    input_image_count = sum([len(b.data) for b in batches])
    generated_image_count = total_ops_per_image * input_image_count
    print(f"{generated_image_count} new images will be created.")
    progress_bar = tqdm(total=generated_image_count)

    for op in ops:
        for i in range(op.num_repetitions):
            # Produce augmentations
            for batches_aug in op.operation.augment_batches(
                    batches, background=should_multithread):
                if user_requested_preview_only:
                    # Preview output one batch at a time.
                    # Blocks execution until the window is closed.
                    # Closing a window will cause the next batch to appear.
                    # Close the Python instance in the dock to stop execution.
                    images_with_labels = [
                        bb.draw_on_image(image)
                        for image, bb in zip(batches_aug.images_aug,
                                             batches_aug.bounding_boxes_aug)
                    ]
                    grid_image = ia.draw_grid(images_with_labels,
                                              cols=None,
                                              rows=None)
                    title = f"{op.name}\nRep {i}\n"
                    # title += ", ".join([item.image_filename for item in batches_aug.data])  # Draw image filenames
                    grid_image = ia.draw_text(grid_image,
                                              8,
                                              8,
                                              title,
                                              color=(255, 0, 0),
                                              size=50)
                    ia.imshow(grid_image, backend='matplotlib')
                    continue

                for image, bbs, data in zip(batches_aug.images_aug,
                                            batches_aug.bounding_boxes_aug,
                                            batches_aug.data):
                    # Write image and matching data file to output folder

                    # Determine base name for image and matching data file
                    image_filename_no_extension, image_extension = os.path.splitext(
                        Path(data.image_path).name)
                    base_filename = ""
                    if op.num_repetitions == 1:
                        base_filename = f"{image_filename_no_extension}_{op.name}"
                    else:
                        base_filename = f"{image_filename_no_extension}_{op.name}_rep{i}"

                    # Write image to output folder
                    output_image_path = os.path.join(
                        output_directory, f"{base_filename}{image_extension}")
                    imageio.imwrite(output_image_path, image)

                    # Write modified imgaug bounding boxes as YOLO format in output folder
                    image_height, image_width, _ = image.shape
                    output_data = ImageData.from_imagaug(
                        image_width, image_height, bbs)
                    output_data.write_yolo(data.data_path, class_names)

                    # Update progress bar
                    progress_bar.update(1)
    progress_bar.close()