def prepare_reference(reference_params: dict, location: str, paired: bool): ParameterValidator.assert_keys(list(reference_params.keys()), ["format", "params"], location, "reference") seq_import_params = reference_params["params"] if "params" in reference_params else {} assert os.path.isfile(seq_import_params["path"]), f"{location}: the file {seq_import_params['path']} does not exist. " \ f"Specify the correct path under reference." if "is_repertoire" in seq_import_params: assert seq_import_params["is_repertoire"] == False, f"{location}: is_repertoire must be False for SequenceImport" else: seq_import_params["is_repertoire"] = False if "paired" in seq_import_params: assert seq_import_params["paired"] == paired, f"{location}: paired must be {paired} for SequenceImport" else: seq_import_params["paired"] = paired format_str = reference_params["format"] import_class = ReflectionHandler.get_class_by_name("{}Import".format(format_str)) default_params = DefaultParamsLoader.load(EnvironmentSettings.default_params_path / "datasets", DefaultParamsLoader.convert_to_snake_case(format_str)) params = {**default_params, **seq_import_params} processed_params = DatasetImportParams.build_object(**params) receptors = ImportHelper.import_items(import_class, reference_params["params"]["path"], processed_params) return receptors
def make_reports_docs(path: Path): filename = "reports.rst" file_path = path / filename with file_path.open("w") as file: pass for report_type_class in [ DataReport, EncodingReport, MLReport, TrainMLModelReport, MultiDatasetReport ]: with file_path.open("a") as file: doc_format = DocumentationFormat( cls=report_type_class, cls_name=f"**{report_type_class.get_title()}**", level_heading=DocumentationFormat.LEVELS[1]) write_class_docs(doc_format, file) subdir = DefaultParamsLoader.convert_to_snake_case( report_type_class.__name__) + "s" classes = ReflectionHandler.all_nonabstract_subclasses( report_type_class, "", f"reports/{subdir}/") make_docs(path, classes, filename, "", "a")