예제 #1
0
    def test(self):

        path = EnvironmentSettings.tmp_test_path / "integration_sequence_classification/"
        dataset = RandomDatasetGenerator.generate_sequence_dataset(50, {4: 1}, {'l1': {1: 0.5, 2: 0.5}}, path / 'data')

        os.environ["cache_type"] = "test"
        encoder_params = {
            "normalization_type": NormalizationType.RELATIVE_FREQUENCY.name,
            "reads": ReadsType.UNIQUE.name,
            "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
            "sequence_type": SequenceType.AMINO_ACID.name,
            "k": 3
        }

        hp_setting = HPSetting(encoder=KmerFrequencyEncoder.build_object(dataset, **encoder_params), encoder_params=encoder_params,
                               ml_method=LogisticRegression(), ml_params={"model_selection_cv": False, "model_selection_n_folds": -1},
                               preproc_sequence=[])

        lc = LabelConfiguration()
        lc.add_label("l1", [1, 2])

        instruction = TrainMLModelInstruction(dataset, GridSearch([hp_setting]), [hp_setting],
                                              SplitConfig(SplitType.RANDOM, 1, 0.5, reports=ReportConfig()),
                                              SplitConfig(SplitType.RANDOM, 1, 0.5, reports=ReportConfig()),
                                              {Metric.BALANCED_ACCURACY}, Metric.BALANCED_ACCURACY, lc, path)

        result = instruction.run(result_path=path)

        shutil.rmtree(path)
    def _create_state_object(self, path):
        repertoires, metadata = RepertoireBuilder.build(sequences=[["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                                                                   ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"]],
                                                        path=path,
                                                        labels={
                                                            "l1": [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
                                                                   1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2],
                                                            "l2": [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1,
                                                                   0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]})

        dataset = RepertoireDataset(repertoires=repertoires, metadata_file=metadata,
                                    labels={"l1": [1, 2], "l2": [0, 1]})
        enc_params = {"k": 3, "model_type": ModelType.SEQUENCE.name, "vector_size": 4}
        hp_settings = [HPSetting(Word2VecEncoder.build_object(dataset, **enc_params), enc_params,
                                 LogisticRegression(),
                                 {"model_selection_cv": False, "model_selection_n_folds": -1},
                                 [])]

        label_config = LabelConfiguration([Label("l1", [1, 2]), Label("l2", [0, 1])])

        process = TrainMLModelInstruction(dataset, GridSearch(hp_settings), hp_settings,
                                          SplitConfig(SplitType.RANDOM, 1, 0.7),
                                          SplitConfig(SplitType.RANDOM, 1, 0.7),
                                          {Metric.BALANCED_ACCURACY}, Metric.BALANCED_ACCURACY, label_config, path)

        state = process.run(result_path=path)

        return state
    def test(self):

        path = EnvironmentSettings.tmp_test_path / "integration_receptor_classification/"
        dataset = self.create_dataset(path)

        os.environ["cache_type"] = "test"

        encoder_params = {
            "normalization_type": NormalizationType.RELATIVE_FREQUENCY.name,
            "reads": ReadsType.UNIQUE.name,
            "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
            "sequence_type": SequenceType.AMINO_ACID.name,
            "k": 3
        }

        hp_setting = HPSetting(encoder=KmerFrequencyEncoder.build_object(
            dataset, **encoder_params),
                               encoder_params=encoder_params,
                               ml_method=LogisticRegression(),
                               ml_params={
                                   "model_selection_cv": False,
                                   "model_selection_n_folds": -1
                               },
                               preproc_sequence=[])

        lc = LabelConfiguration()
        lc.add_label("l1", [1, 2])

        instruction = TrainMLModelInstruction(
            dataset, GridSearch([hp_setting]), [hp_setting],
            SplitConfig(SplitType.RANDOM, 1, 0.5, reports=ReportConfig()),
            SplitConfig(SplitType.RANDOM, 1, 0.5, reports=ReportConfig()),
            {Metric.BALANCED_ACCURACY}, Metric.BALANCED_ACCURACY, lc, path)

        state = instruction.run(result_path=path)
        print(vars(state))

        self.assertEqual(
            1.0, state.assessment_states[0].label_states["l1"].
            optimal_assessment_item.performance[
                state.optimization_metric.name.lower()])

        shutil.rmtree(path)
예제 #4
0
    def test_run(self):

        path = EnvironmentSettings.tmp_test_path / "hpoptimproc/"
        PathBuilder.build(path)

        repertoires, metadata = RepertoireBuilder.build(
            sequences=[["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"]],
            path=path,
            labels={
                "l1": [
                    1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
                    1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
                ],
                "l2": [
                    0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,
                    0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
                ]
            })

        dataset = RepertoireDataset(repertoires=repertoires,
                                    metadata_file=metadata,
                                    labels={
                                        "l1": [1, 2],
                                        "l2": [0, 1]
                                    })
        enc1 = {
            "k": 3,
            "model_type": ModelType.SEQUENCE.name,
            "vector_size": 4
        }
        enc2 = {
            "k": 3,
            "model_type": ModelType.SEQUENCE.name,
            "vector_size": 6
        }
        hp_settings = [
            HPSetting(Word2VecEncoder.build_object(dataset, **enc1), enc1,
                      LogisticRegression(), {
                          "model_selection_cv": False,
                          "model_selection_n_folds": -1
                      }, []),
            HPSetting(
                Word2VecEncoder.build_object(dataset, **enc2), enc2, SVM(), {
                    "model_selection_cv": False,
                    "model_selection_n_folds": -1
                },
                [ClonesPerRepertoireFilter(lower_limit=-1, upper_limit=1000)])
        ]

        report = SequenceLengthDistribution()
        label_config = LabelConfiguration(
            [Label("l1", [1, 2]), Label("l2", [0, 1])])

        process = TrainMLModelInstruction(
            dataset, GridSearch(hp_settings), hp_settings,
            SplitConfig(SplitType.RANDOM,
                        1,
                        0.5,
                        reports=ReportConfig(data_splits={"seqlen": report})),
            SplitConfig(SplitType.RANDOM,
                        1,
                        0.5,
                        reports=ReportConfig(data_splits={"seqlen": report})),
            {Metric.BALANCED_ACCURACY}, Metric.BALANCED_ACCURACY, label_config,
            path)

        state = process.run(result_path=path)

        self.assertTrue(isinstance(state, TrainMLModelState))
        self.assertEqual(1, len(state.assessment_states))
        self.assertTrue("l1" in state.assessment_states[0].label_states)
        self.assertTrue("l2" in state.assessment_states[0].label_states)

        shutil.rmtree(path)