def phaser_stages13(debug=False, print_times=False): return new_phaser_chain([ prepare_phaser(), trivial_phaser(), family_phaser(), family_child_comparison_phaser(), ], debug=debug, print_times=print_times)
def setUp(self): '''Load test data and expected results.''' unittest.TestCase.setUp(self) # The way to load a pedigree in conjunction with a genotype set is to recode # its sample IDs to consecutive for easier access by phasers. self.problem = io.read_plink(pedigree=itu.HUTT_PED, prefix=itu.GENOTYPE_SAMPLE, haplotype=None) self.phaser = new_phaser_chain([trivial_phaser()])
def setUp(self): '''Load test data and expected results.''' unittest.TestCase.setUp(self) # Test phaser, doesn't matter which here self.phaser = new_phaser_chain([trivial_phaser()]) # Generate a non-trivial Problem self.problem = itu.Templates.problem_family(itu.FAMILY13, haplotype=True)
def nuclear_family_phaser(debug=False, print_times=False): return new_phaser_chain([ prepare_phaser(), trivial_phaser(), family_phaser(), family_child_comparison_phaser(), family_sib_comparison_phaser(), ], debug=debug, print_times=print_times)
def __build_phaser(options): '''Bulid and return the phasing processing chain by options - factory method.''' if options.stage == 0: # 07-DEC-12: disabling stage 4 (family_sib_comparison_phaser) since it degrades phasing & imputation chain = [ prepare_phaser(), trivial_phaser(), family_phaser(), family_child_comparison_phaser(), phase_distant.family_sib_comparison_phaser(), phase_distant.distant_phaser() ] elif options.stage == 1: chain = [prepare_phaser(), trivial_phaser()] elif options.stage == 2: chain = [family_phaser()] elif options.stage == 3: chain = [family_child_comparison_phaser()] elif options.stage == 4: chain = [phase_distant.family_sib_comparison_phaser()] elif options.stage == 5: chain = [phase_distant.distant_phaser()] return chain
def setUp(self): '''Load test data and expected results.''' unittest.TestCase.setUp(self) # The way to load a pedigree in conjunction with a genotype set is to recode # its sample IDs to consecutive for easier access by phasers. self.problem = io.read_plink(prefix=itu.GENOTYPE_DUO, haplotype=None, pedigree=itu.GENOTYPE_DUO + '.tfam') self.phaser = trivial_phaser() # Expected results self.solution = Problem(self.problem.pedigree, io_genotype.read('plink', 'genotype', prefix=itu.GENOTYPE_DUO_SOLUTION))
def setUp(self): '''Load test data and expected results.''' unittest.TestCase.setUp(self) # The way to load a pedigree in conjunction with a genotype set is to recode # its sample IDs to consecutive for easier access by phasers. self.problem = io.read_plink(prefix=itu.GENOTYPE_TRIO, haplotype=None, pedigree=itu.GENOTYPE_TRIO + '.tfam') self.phaser = trivial_phaser() # Expected results self.solution = Problem(self.problem.pedigree, io_genotype.read('plink', 'genotype', prefix=itu.GENOTYPE_TRIO_SOLUTION))
def setUp(self): '''Load test data and expected results.''' unittest.TestCase.setUp(self) # Load test data ready from previous phasing stagees self.problem = io.read_npz(itu.FAMILY_TOO_ZEROED_STAGE1) self.family = self.problem.families()[0] self.phaser = phase_core.PhaseDecorator(FilterChain([trivial_phaser(), family_phaser(), family_child_comparison_phaser()])) self.comparator = ic.ChildComparator(Struct(problem=self.problem, params=PhaseParam()), self.family)
def setUp(self): '''Load test data and expected results.''' unittest.TestCase.setUp(self) # Load test data ready from previous phasing stagees self.problem = io.read_npz(itu.FAMILY13_STAGE2) self.family = self.problem.families()[0] self.phaser = phase_core.PhaseDecorator( FilterChain([ trivial_phaser(), family_phaser(), family_child_comparison_phaser() ])) self.comparator = ic.ChildComparator( Struct(problem=self.problem, params=PhaseParam()), self.family)
def prepare_and_trivial_phaser(debug=False, print_times=False): return new_phaser_chain( [prepare_phaser(), trivial_phaser()], debug=debug, print_times=print_times)
The segments obtained on different platforms (chips) should be similar (in their base-pair beginning and end positions). Created on August 2, 2013 @author: Oren Livne <*****@*****.**> ============================================================ ''' import impute as im, os, numpy as np, matplotlib.pyplot as P, sys from impute.kids.hutt_kids import get_sib_ids, read_chip_problem, chip_data_set from impute.phasing.phase_trivial import trivial_phaser #################################################################################### if __name__ == '__main__': path = os.environ['OBER_OUT'] + '/kids' chrom = 22 debug = 1 num_processes = 1 # 4 params = im.PhaseParam() sibs = get_sib_ids(path) sib = 842 # Has high imputation call rate but high re-phasing error rate chip = 'cytosnp' p = im.io.read_npz('%s/%s/chr%d/%s.npz' % (path, chip, chrom, chip_data_set(chip))) # Run stage 1 so that we can step through the code and find why SNP 1700 # is phased to 2,1 instead of 1,2 phaser = trivial_phaser() problem = phaser.run(p, im.PhaseParam(selected_samples=np.array([842]), debug=True, print_times=True))
def setUp(self): '''Load test data and expected results.''' unittest.TestCase.setUp(self) # The way to load a pedigree in conjunction with a genotype set is to recode # its sample IDs to consecutive for easier access by phasers. self.phaser = new_phaser_chain([trivial_phaser(), family_phaser(), family_child_comparison_phaser()])
def prepare_and_trivial_phaser(debug=False, print_times=False): return new_phaser_chain([ prepare_phaser(), trivial_phaser() ], debug=debug, print_times=print_times)
============================================================ ''' import impute as im, os, numpy as np, matplotlib.pyplot as P, sys from impute.kids.hutt_kids import get_sib_ids, read_chip_problem, chip_data_set from impute.phasing.phase_trivial import trivial_phaser #################################################################################### if __name__ == '__main__': path = os.environ['OBER_OUT'] + '/kids' chrom = 22 debug = 1 num_processes = 1 # 4 params = im.PhaseParam() sibs = get_sib_ids(path) sib = 842 # Has high imputation call rate but high re-phasing error rate chip = 'cytosnp' p = im.io.read_npz('%s/%s/chr%d/%s.npz' % (path, chip, chrom, chip_data_set(chip))) # Run stage 1 so that we can step through the code and find why SNP 1700 # is phased to 2,1 instead of 1,2 phaser = trivial_phaser() problem = phaser.run( p, im.PhaseParam(selected_samples=np.array([842]), debug=True, print_times=True))