예제 #1
0
def test_na_at_i_end(test_data):
    data = test_data(SHAPE)
    last_i = np.shape(data)[0] - 1
    data = test_data(SHAPE, last_i, 3)
    actual = impy.locf(data, axis=1)
    data[last_i, 3] = data[last_i - 1, 3]
    assert np.array_equal(actual, data)
예제 #2
0
파일: pre_lof.py 프로젝트: antybody/cdnn
def pre_lof(data, year, year1):
    # 设定时间序列
    # data['TIMESTAMP'] = pd.to_datetime(data['TIMESTAMP'])
    data = data.set_index('TIMESTAMP')
    if year.strip():
        if year1.strip():
            data = data[year:year1]
        else:
            data = data[year]
    # 补充了数据 ,这时补充的数据都是 0
    df_period = data.resample('D').sum()

    # 替换空值为其他值
    df_period_clone = df_period
    df_period_clone.replace(0, np.nan, inplace=True)

    # 平滑后的数据
    isnullcon = df_period_clone.isnull().any()
    # print(isnullcon['FP_TOTALENG'])
    # 这里来个判断,如果数据里没有需要平滑的点,那么直接输出
    if isnullcon['FP_TOTALENG']:
        df_after = impy.locf(df_period_clone, axis='FP_TOTALENG')
        for i in range(len(df_period_clone)):
            # print('-----平缓后数据-----')
            # print(df_after[0][i])
            # print('-----平缓前数据-----')
            # print(df_period['FP_TOTALENG'][i])

            df_period_clone['FP_TOTALENG'][i] = df_after[0][i]

    return df_period_clone
예제 #3
0
 def test_na_at_i_end(self):
     """Check if at row[last_i],column[i]=row[last_i-1],column[i]"""
     last_i = np.shape(self.data_c)[0] - 1
     self.data_c[last_i][3] = np.nan
     actual = impy.locf(self.data_c, axis=1)
     self.data_c[last_i][3] = self.data_c[last_i - 1][3]
     self.assertTrue(np.array_equal(actual, self.data_c))
예제 #4
0
파일: pre_lof.py 프로젝트: antybody/cdnn
def replace_data(df_period, field):
    pd.set_option('display.max_rows', None)
    # 替换空值为其他值
    df_period_clone = df_period
    df_period_clone.replace(0, np.nan, inplace=True)

    # 平滑后的数据
    isnullcon = df_period_clone.isnull().any()
    # print(isnullcon['FP_TOTALENG'])
    # 这里来个判断,如果数据里没有需要平滑的点,那么直接输出
    df_peroid_v = df_period_clone[field]
    df_peroid_v.reset_index(drop=True, inplace=True)
    print(df_peroid_v.index)
    if isnullcon[field]:
        df_after = impy.locf(df_period_clone, axis=field)
        for i in range(len(df_period_clone)):
            print('-----平缓后数据-----')
            print(df_after[0][i])
            print('-----平缓前数据-----')
            print(df_period[field][i])

            df_period_clone[field][i] = df_after[0][i]
    # print(df_period_clone)
    return df_period_clone
예제 #5
0
def test_locf_(test_data):
    data = test_data(SHAPE)
    imputed = impy.locf(data)
    return_na_check(imputed)
예제 #6
0
def test_out_of_bounds(test_data):
    """Check out of bounds error, should throw BadInputError for any axis outside [0,1]"""
    data = test_data(SHAPE)
    with np.testing.assert_raises(error.BadInputError):
        impy.locf(data, axis=3)
예제 #7
0
def test_na_at_i(test_data):
    data = test_data(SHAPE, 3, 3)
    actual = impy.locf(data, axis=1)
    data[3, 3] = data[2, 3]
    assert np.array_equal(actual, data)
예제 #8
0
def test_na_at_i_start(test_data):
    data = test_data(SHAPE)
    actual = impy.locf(data, axis=1)
    data[0, 0] = data[1, 0]
    assert np.array_equal(actual, data)
예제 #9
0
 def test_na_at_i(self):
     """Check if a null row[i],column[j]=row[i-1],column[j]"""
     self.data_c[3][3] = np.nan
     actual = impy.locf(self.data_c, axis=1)
     self.data_c[3][3] = self.data_c[2][3]
     self.assertTrue(np.array_equal(actual, self.data_c))
예제 #10
0
 def test_na_at_i_start(self):
     """Check if null value at a row[0],column[0]=row[1],column[0]"""
     self.data_c[0][0] = np.nan
     actual = impy.locf(self.data_c, axis=1)
     self.data_c[0][0] = self.data_c[1][0]
     self.assertTrue(np.array_equal(actual, self.data_c))
예제 #11
0
 def test_return_type(self):
     """ Check return type, should return an np.ndarray"""
     imputed = impy.locf(self.data_m)
     self.assertTrue(isinstance(imputed, np.ndarray))
예제 #12
0
 def test_impute_missing_values(self):
     """ After imputation, no NaN's should exist"""
     imputed = impy.locf(self.data_m)
     self.assertFalse(np.isnan(imputed).any())