예제 #1
0
파일: imreg.py 프로젝트: arve0/imreg_dft
def transform_img(img, scale=1.0, angle=0.0, tvec=(0, 0), bgval=None, order=1):
    """
    Return translation vector to register images.

    Args:
        img (2D or 3D numpy array): What will be transformed.
            If a 3D array is passed, it is treated in a manner in which RGB
            images are supposed to be handled - i.e. assume that coordinates
            are (Y, X, channels).
        scale (float): The scale factor (scale > 1.0 means zooming in)
        angle (float): Degrees of rotation (clock-wise)
        tvec (2-tuple): Pixel translation vector, Y and X component.
        bgval (float): Shade of the background (filling during transformations)
            If None is passed, :func:`imreg_dft.utils.get_borderval` with
            radius of 5 is used to get it.
        order (int): Order of approximation (when doing transformations). 1 =
            linear, 3 = cubic etc. Linear works surprisingly well.

    Returns:
        The transformed img, may have another i.e. (bigger) shape than
            the source.
    """
    if img.ndim == 3:
        # A bloody painful special case of RGB images
        ret = np.empty_like(img)
        for idx in range(img.shape[2]):
            sli = (slice(None), slice(None), idx)
            ret[sli] = transform_img(img[sli], scale, angle, tvec,
                                     bgval, order)
        return ret

    if bgval is None:
        bgval = utils.get_borderval(img, 5)

    bigshape = np.array(img.shape) * 1.2
    bg = np.zeros(bigshape, img.dtype) + bgval

    dest0 = utils.embed_to(bg, img.copy())
    if scale != 1.0:
        dest0 = ndii.zoom(dest0, scale, order=order, cval=bgval)
    if angle != 0.0:
        dest0 = ndii.rotate(dest0, angle, order=order, cval=bgval)

    if tvec[0] != 0 or tvec[1] != 0:
        dest0 = ndii.shift(dest0, tvec, order=order, cval=bgval)

    bg = np.zeros_like(img) + bgval
    dest = utils.embed_to(bg, dest0)
    return dest
예제 #2
0
def transform_img(img, scale=1.0, angle=0.0, tvec=(0, 0), bgval=None, order=1):
    """
    Return translation vector to register images.

    Args:
        img (2D or 3D numpy array): What will be transformed.
            If a 3D array is passed, it is treated in a manner in which RGB
            images are supposed to be handled - i.e. assume that coordinates
            are (Y, X, channels).
        scale (float): The scale factor (scale > 1.0 means zooming in)
        angle (float): Degrees of rotation (clock-wise)
        tvec (2-tuple): Pixel translation vector, Y and X component.
        bgval (float): Shade of the background (filling during transformations)
            If None is passed, :func:`imreg_dft.utils.get_borderval` with
            radius of 5 is used to get it.
        order (int): Order of approximation (when doing transformations). 1 =
            linear, 3 = cubic etc. Linear works surprisingly well.

    Returns:
        np.ndarray: The transformed img, may have another
        i.e. (bigger) shape than the source.
    """
    if img.ndim == 3:
        # A bloody painful special case of RGB images
        ret = np.empty_like(img)
        for idx in range(img.shape[2]):
            sli = (slice(None), slice(None), idx)
            ret[sli] = transform_img(img[sli], scale, angle, tvec,
                                     bgval, order)
        return ret

    if bgval is None:
        bgval = utils.get_borderval(img)

    bigshape = np.round(np.array(img.shape) * 1.2).astype(int)
    bg = np.zeros(bigshape, img.dtype) + bgval

    dest0 = utils.embed_to(bg, img.copy())
    if scale != 1.0:
        dest0 = ndii.zoom(dest0, scale, order=order, cval=bgval)
    if angle != 0.0:
        dest0 = ndii.rotate(dest0, angle, order=order, cval=bgval)

    if tvec[0] != 0 or tvec[1] != 0:
        dest0 = ndii.shift(dest0, tvec, order=order, cval=bgval)

    bg = np.zeros_like(img) + bgval
    dest = utils.embed_to(bg, dest0)
    return dest
예제 #3
0
def _preprocess_extend_single(im, extend, low, high, cut, rcoef, bigshape):
    im = utils.extend_by(im, extend)
    im = utils.imfilter(im, low, high, cut)
    if rcoef != 1:
        im = resample(im, rcoef)

    # Make the shape of images the same
    bg = np.zeros(bigshape, dtype=im.dtype) + utils.get_borderval(im, 5)
    im = utils.embed_to(bg, im)
    return im
예제 #4
0
def _preprocess_extend_single(im, extend, low, high, cut, rcoef, bigshape):
    im = utils.extend_by(im, extend)
    im = utils.imfilter(im, low, high, cut)
    if rcoef != 1:
        im = resample(im, rcoef)

    # Make the shape of images the same
    bg = np.zeros(bigshape) + utils.get_borderval(im, 5)
    im = utils.embed_to(bg, im)
    return im
예제 #5
0
def _preprocess_extend(ims, extend, low, high, cut, rcoef):
    ims = [utils.extend_by(img, extend) for img in ims]
    bigshape = np.array([img.shape for img in ims]).max(0)

    ims = filter_images(ims, low, high, cut)
    if rcoef != 1:
        ims = [resample(img, rcoef) for img in ims]
        bigshape *= rcoef

    # Make the shape of images the same
    bgs = [np.zeros(bigshape) + utils.get_borderval(img, 5) for img in ims]
    ims = [utils.embed_to(bg, img) for bg, img in zip(bgs, ims)]
    return ims
예제 #6
0
 def testUndo(self):
     what = np.random.random(self.whatshape)
     wheres = [
         (20, 11),
         (21, 12),
         (22, 13),
         (50, 60),
     ]
     for whs in wheres:
         where = np.zeros(whs)
         embd = utils.embed_to(where, what.copy())
         undone = utils.undo_embed(embd, what.shape)
         self.assertEqual(what.shape, undone.shape, )
         np.testing.assert_equal(what, undone)
예제 #7
0
파일: utils.py 프로젝트: matejak/imreg_dft
 def testUndo(self):
     what = np.random.random(self.whatshape)
     wheres = [
         (20, 11),
         (21, 12),
         (22, 13),
         (50, 60),
     ]
     for whs in wheres:
         where = np.zeros(whs)
         embd = utils.embed_to(where, what.copy())
         undone = utils.undo_embed(embd, what.shape)
         self.assertEqual(what.shape, undone.shape, )
         np.testing.assert_equal(what, undone)
예제 #8
0
def process_images(ims, opts, tosa=None):
    # lazy import so no imports before run() is really called
    import numpy as np
    from imreg_dft import utils
    from imreg_dft import imreg

    ims = [utils.extend_by(img, opts["extend"]) for img in ims]
    bigshape = np.array([img.shape for img in ims]).max(0)

    ims = filter_images(ims, opts["low"], opts["high"])
    rcoef = opts["resample"]
    if rcoef != 1:
        ims = [resample(img, rcoef) for img in ims]
        bigshape *= rcoef

    # Make the shape of images the same
    ims = [
        utils.embed_to(np.zeros(bigshape) + utils.get_borderval(img, 5), img)
        for img in ims
    ]

    resdict = imreg.similarity(ims[0], ims[1], opts["iters"], opts["order"],
                               opts["constraints"], opts["filter_pcorr"],
                               opts["exponent"])

    im2 = resdict.pop("timg")

    # Seems that the reampling simply scales the translation
    resdict["tvec"] /= rcoef
    ty, tx = resdict["tvec"]
    resdict["tx"] = tx
    resdict["ty"] = ty
    resdict["imgs"] = ims
    tform = resdict

    if tosa is not None:
        tosa[:] = ird.transform_img_dict(tosa, tform)

    if rcoef != 1:
        ims = [resample(img, 1.0 / rcoef) for img in ims]
        im2 = resample(im2, 1.0 / rcoef)
        resdict["Dt"] /= rcoef

    resdict["unextended"] = [
        utils.unextend_by(img, opts["extend"]) for img in ims + [im2]
    ]

    return resdict
예제 #9
0
파일: cli.py 프로젝트: arve0/imreg_dft
def process_images(ims, opts, tosa=None):
    # lazy import so no imports before run() is really called
    import numpy as np
    from imreg_dft import utils
    from imreg_dft import imreg

    ims = [utils.extend_by(img, opts["extend"]) for img in ims]
    bigshape = np.array([img.shape for img in ims]).max(0)

    ims = filter_images(ims, opts["low"], opts["high"])
    rcoef = opts["resample"]
    if rcoef != 1:
        ims = [resample(img, rcoef) for img in ims]
        bigshape *= rcoef

    # Make the shape of images the same
    ims = [utils.embed_to(np.zeros(bigshape) + utils.get_borderval(img, 5), img)
           for img in ims]

    resdict = imreg.similarity(
        ims[0], ims[1], opts["iters"], opts["order"], opts["constraints"],
        opts["filter_pcorr"], opts["exponent"])

    im2 = resdict.pop("timg")

    # Seems that the reampling simply scales the translation
    resdict["tvec"] /= rcoef
    ty, tx = resdict["tvec"]
    resdict["tx"] = tx
    resdict["ty"] = ty
    resdict["imgs"] = ims
    tform = resdict

    if tosa is not None:
        tosa[:] = ird.transform_img_dict(tosa, tform)

    if rcoef != 1:
        ims = [resample(img, 1.0 / rcoef) for img in ims]
        im2 = resample(im2, 1.0 / rcoef)
        resdict["Dt"] /= rcoef

    resdict["unextended"] = [utils.unextend_by(img, opts["extend"])
                             for img in ims + [im2]]

    return resdict
예제 #10
0
def transform_img(img,
                  scale=1.0,
                  angle=0.0,
                  tvec=(0, 0),
                  mode="constant",
                  bgval=None,
                  order=1):
    """
    Return translation vector to register images.

    Args:
        img (2D or 3D numpy array): What will be transformed.
            If a 3D array is passed, it is treated in a manner in which RGB
            images are supposed to be handled - i.e. assume that coordinates
            are (Y, X, channels).
            Complex images are handled in a way that treats separately
            the real and imaginary parts.
        scale (float): The scale factor (scale > 1.0 means zooming in)
        angle (float): Degrees of rotation (clock-wise)
        tvec (2-tuple): Pixel translation vector, Y and X component.
        mode (string): The transformation mode (refer to e.g.
            :func:`scipy.ndimage.shift` and its kwarg ``mode``).
        bgval (float): Shade of the background (filling during transformations)
            If None is passed, :func:`imreg_dft.utils.get_borderval` with
            radius of 5 is used to get it.
        order (int): Order of approximation (when doing transformations). 1 =
            linear, 3 = cubic etc. Linear works surprisingly well.

    Returns:
        np.ndarray: The transformed img, may have another
        i.e. (bigger) shape than the source.
    """
    if img.ndim == 3:
        # A bloody painful special case of RGB images
        ret = np.empty_like(img)
        for idx in range(img.shape[2]):
            sli = (slice(None), slice(None), idx)
            ret[sli] = transform_img(img[sli], scale, angle, tvec, mode, bgval,
                                     order)
        return ret
    elif np.iscomplexobj(img):
        decomposed = np.empty(img.shape + (2, ), float)
        decomposed[:, :, 0] = img.real
        decomposed[:, :, 1] = img.imag
        # The bgval makes little sense now, as we decompose the image
        res = transform_img(decomposed, scale, angle, tvec, mode, None, order)
        ret = res[:, :, 0] + 1j * res[:, :, 1]
        return ret

    if bgval is None:
        bgval = utils.get_borderval(img)

    bigshape = np.round(np.array(img.shape) * 1.2).astype(int)
    bg = np.zeros(bigshape, img.dtype) + bgval

    dest0 = utils.embed_to(bg, img.copy())
    # TODO: We have problems with complex numbers
    # that are not supported by zoom(), rotate() or shift()
    if scale != 1.0:
        dest0 = ndii.zoom(dest0, scale, order=order, mode=mode, cval=bgval)
    if angle != 0.0:
        dest0 = ndii.rotate(dest0, angle, order=order, mode=mode, cval=bgval)

    if tvec[0] != 0 or tvec[1] != 0:
        dest0 = ndii.shift(dest0, tvec, order=order, mode=mode, cval=bgval)

    bg = np.zeros_like(img) + bgval
    dest = utils.embed_to(bg, dest0)
    return dest
예제 #11
0
파일: imreg.py 프로젝트: matejak/imreg_dft
def transform_img(img, scale=1.0, angle=0.0, tvec=(0, 0),
                  mode="constant", bgval=None, order=1):
    """
    Return translation vector to register images.

    Args:
        img (2D or 3D numpy array): What will be transformed.
            If a 3D array is passed, it is treated in a manner in which RGB
            images are supposed to be handled - i.e. assume that coordinates
            are (Y, X, channels).
            Complex images are handled in a way that treats separately
            the real and imaginary parts.
        scale (float): The scale factor (scale > 1.0 means zooming in)
        angle (float): Degrees of rotation (clock-wise)
        tvec (2-tuple): Pixel translation vector, Y and X component.
        mode (string): The transformation mode (refer to e.g.
            :func:`scipy.ndimage.shift` and its kwarg ``mode``).
        bgval (float): Shade of the background (filling during transformations)
            If None is passed, :func:`imreg_dft.utils.get_borderval` with
            radius of 5 is used to get it.
        order (int): Order of approximation (when doing transformations). 1 =
            linear, 3 = cubic etc. Linear works surprisingly well.

    Returns:
        np.ndarray: The transformed img, may have another
        i.e. (bigger) shape than the source.
    """
    if img.ndim == 3:
        # A bloody painful special case of RGB images
        ret = np.empty_like(img)
        for idx in range(img.shape[2]):
            sli = (slice(None), slice(None), idx)
            ret[sli] = transform_img(img[sli], scale, angle, tvec,
                                     mode, bgval, order)
        return ret
    elif np.iscomplexobj(img):
        decomposed = np.empty(img.shape + (2,), float)
        decomposed[:, :, 0] = img.real
        decomposed[:, :, 1] = img.imag
        # The bgval makes little sense now, as we decompose the image
        res = transform_img(decomposed, scale, angle, tvec, mode, None, order)
        ret = res[:, :, 0] + 1j * res[:, :, 1]
        return ret

    if bgval is None:
        bgval = utils.get_borderval(img)

    bigshape = np.round(np.array(img.shape) * 1.2).astype(int)
    bg = np.zeros(bigshape, img.dtype) + bgval

    dest0 = utils.embed_to(bg, img.copy())
    # TODO: We have problems with complex numbers
    # that are not supported by zoom(), rotate() or shift()
    if scale != 1.0:
        dest0 = ndii.zoom(dest0, scale, order=order, mode=mode, cval=bgval)
    if angle != 0.0:
        dest0 = ndii.rotate(dest0, angle, order=order, mode=mode, cval=bgval)

    if tvec[0] != 0 or tvec[1] != 0:
        dest0 = ndii.shift(dest0, tvec, order=order, mode=mode, cval=bgval)

    bg = np.zeros_like(img) + bgval
    dest = utils.embed_to(bg, dest0)
    return dest