예제 #1
1
            idx = int(detections[0, 0, i, 1])
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")

            # draw the prediction on the frame
            label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
            cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx],
                          2)
            y = startY - 15 if startY - 15 > 15 else startY + 15
            cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX,
                        0.5, COLORS[idx], 2)

    # show the output frame
    cv2.imshow("Frame", frame)
    key = cv2.waitKey(1) & 0xFF

    # if the `q` key was pressed, break from the loop
    if key == ord("q"):
        break

    # update the FPS counter
    fps.update()

# stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
예제 #2
0
        image_count += 1  # global count of all images received
        sender_image_counts[sent_from] += 1  # count images for each RPi name
        cv2.imshow(sent_from, image)  # display images 1 window per sent_from
        cv2.waitKey(1)
        image_hub.send_reply(b"OK")  # REP reply
except (KeyboardInterrupt, SystemExit):
    pass  # Ctrl-C was pressed to end program; FPS stats computed below
except Exception as ex:
    print('Python error with no Exception handler:')
    print('Traceback error:', ex)
    traceback.print_exc()
finally:
    # stop the timer and display FPS information
    print()
    print('Test Program: ', __file__)
    print('Total Number of Images received: {:,g}'.format(image_count))
    if first_image:  # never got images from any RPi
        sys.exit()
    fps.stop()
    print('Number of Images received from each RPi:')
    for RPi in sender_image_counts:
        print('    ', RPi, ': {:,g}'.format(sender_image_counts[RPi]))
    image_size = image.shape
    print('Size of last image received: ', image_size)
    uncompressed_size = image_size[0] * image_size[1] * image_size[2]
    print('    = {:,g} bytes'.format(uncompressed_size))
    print('Elasped time: {:,.2f} seconds'.format(fps.elapsed()))
    print('Approximate FPS: {:.2f}'.format(fps.fps()))
    cv2.destroyAllWindows()
    sys.exit()
예제 #3
0
def run():

    # construct the argument parse and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-p",
                    "--prototxt",
                    required=False,
                    help="path to Caffe 'deploy' prototxt file")
    ap.add_argument("-m",
                    "--model",
                    required=True,
                    help="path to Caffe pre-trained model")
    ap.add_argument("-i",
                    "--input",
                    type=str,
                    help="path to optional input video file")
    ap.add_argument("-o",
                    "--output",
                    type=str,
                    help="path to optional output video file")
    # confidence default 0.4
    ap.add_argument("-c",
                    "--confidence",
                    type=float,
                    default=0.4,
                    help="minimum probability to filter weak detections")
    ap.add_argument("-s",
                    "--skip-frames",
                    type=int,
                    default=30,
                    help="# of skip frames between detections")
    args = vars(ap.parse_args())

    # initialize the list of class labels MobileNet SSD was trained to
    # detect
    CLASSES = [
        "background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
        "car", "cat", "chair", "cow", "diningtable", "dog", "horse",
        "motorbike", "person", "pottedplant", "sheep", "sofa", "train",
        "tvmonitor"
    ]

    # load our serialized model from disk
    net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

    # if a video path was not supplied, grab a reference to the ip camera
    if not args.get("input", False):
        print("[INFO] Starting the live stream..")
        vs = VideoStream(config.url).start()
        time.sleep(2.0)

    # otherwise, grab a reference to the video file
    else:
        print("[INFO] Starting the video..")
        vs = cv2.VideoCapture(args["input"])

    # initialize the video writer (we'll instantiate later if need be)
    writer = None

    # initialize the frame dimensions (we'll set them as soon as we read
    # the first frame from the video)
    W = None
    H = None

    # instantiate our centroid tracker, then initialize a list to store
    # each of our dlib correlation trackers, followed by a dictionary to
    # map each unique object ID to a TrackableObject
    ct = CentroidTracker(maxDisappeared=40, maxDistance=50)
    trackers = []
    trackableObjects = {}

    # initialize the total number of frames processed thus far, along
    # with the total number of objects that have moved either up or down
    totalFrames = 0
    totalDown = 0
    totalUp = 0
    x = []
    empty = []
    empty1 = []

    # start the frames per second throughput estimator
    fps = FPS().start()

    if config.Thread:
        vs = thread.ThreadingClass(config.url)

    # loop over frames from the video stream
    while True:
        # grab the next frame and handle if we are reading from either
        # VideoCapture or VideoStream
        frame = vs.read()
        frame = frame[1] if args.get("input", False) else frame

        # if we are viewing a video and we did not grab a frame then we
        # have reached the end of the video
        if args["input"] is not None and frame is None:
            break

        # resize the frame to have a maximum width of 500 pixels (the
        # less data we have, the faster we can process it), then convert
        # the frame from BGR to RGB for dlib
        frame = imutils.resize(frame, width=500)
        rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        # if the frame dimensions are empty, set them
        if W is None or H is None:
            (H, W) = frame.shape[:2]

        # if we are supposed to be writing a video to disk, initialize
        # the writer
        if args["output"] is not None and writer is None:
            fourcc = cv2.VideoWriter_fourcc(*"MJPG")
            writer = cv2.VideoWriter(args["output"], fourcc, 30, (W, H), True)

        # initialize the current status along with our list of bounding
        # box rectangles returned by either (1) our object detector or
        # (2) the correlation trackers
        status = "Waiting"
        rects = []

        # check to see if we should run a more computationally expensive
        # object detection method to aid our tracker
        if totalFrames % args["skip_frames"] == 0:
            # set the status and initialize our new set of object trackers
            status = "Detecting"
            trackers = []

            # convert the frame to a blob and pass the blob through the
            # network and obtain the detections
            blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
            net.setInput(blob)
            detections = net.forward()

            # loop over the detections
            for i in np.arange(0, detections.shape[2]):
                # extract the confidence (i.e., probability) associated
                # with the prediction
                confidence = detections[0, 0, i, 2]

                # filter out weak detections by requiring a minimum
                # confidence
                if confidence > args["confidence"]:
                    # extract the index of the class label from the
                    # detections list
                    idx = int(detections[0, 0, i, 1])

                    # if the class label is not a person, ignore it
                    if CLASSES[idx] != "person":
                        continue

                    # compute the (x, y)-coordinates of the bounding box
                    # for the object
                    box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
                    (startX, startY, endX, endY) = box.astype("int")

                    # construct a dlib rectangle object from the bounding
                    # box coordinates and then start the dlib correlation
                    # tracker
                    tracker = dlib.correlation_tracker()
                    rect = dlib.rectangle(startX, startY, endX, endY)
                    tracker.start_track(rgb, rect)

                    # add the tracker to our list of trackers so we can
                    # utilize it during skip frames
                    trackers.append(tracker)

        # otherwise, we should utilize our object *trackers* rather than
        # object *detectors* to obtain a higher frame processing throughput
        else:
            # loop over the trackers
            for tracker in trackers:
                # set the status of our system to be 'tracking' rather
                # than 'waiting' or 'detecting'
                status = "Tracking"

                # update the tracker and grab the updated position
                tracker.update(rgb)
                pos = tracker.get_position()

                # unpack the position object
                startX = int(pos.left())
                startY = int(pos.top())
                endX = int(pos.right())
                endY = int(pos.bottom())

                # add the bounding box coordinates to the rectangles list
                rects.append((startX, startY, endX, endY))

        # draw a horizontal line in the center of the frame -- once an
        # object crosses this line we will determine whether they were
        # moving 'up' or 'down'
        cv2.line(frame, (0, H // 2), (W, H // 2), (0, 0, 0), 3)
        cv2.putText(frame, "-Prediction border - Entrance-",
                    (10, H - ((i * 20) + 200)), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                    (0, 0, 0), 1)

        # use the centroid tracker to associate the (1) old object
        # centroids with (2) the newly computed object centroids
        objects = ct.update(rects)

        # loop over the tracked objects
        for (objectID, centroid) in objects.items():
            # check to see if a trackable object exists for the current
            # object ID
            to = trackableObjects.get(objectID, None)

            # if there is no existing trackable object, create one
            if to is None:
                to = TrackableObject(objectID, centroid)

            # otherwise, there is a trackable object so we can utilize it
            # to determine direction
            else:
                # the difference between the y-coordinate of the *current*
                # centroid and the mean of *previous* centroids will tell
                # us in which direction the object is moving (negative for
                # 'up' and positive for 'down')
                y = [c[1] for c in to.centroids]
                direction = centroid[1] - np.mean(y)
                to.centroids.append(centroid)

                # check to see if the object has been counted or not
                if not to.counted:
                    # if the direction is negative (indicating the object
                    # is moving up) AND the centroid is above the center
                    # line, count the object
                    if direction < 0 and centroid[1] < H // 2:
                        totalUp += 1
                        empty.append(totalUp)
                        to.counted = True

                    # if the direction is positive (indicating the object
                    # is moving down) AND the centroid is below the
                    # center line, count the object
                    elif direction > 0 and centroid[1] > H // 2:
                        totalDown += 1
                        empty1.append(totalDown)
                        #print(empty1[-1])
                        x = []
                        # compute the sum of total people inside
                        x.append(len(empty1) - len(empty))
                        #print("Total people inside:", x)
                        # if the people limit exceeds over threshold, send an email alert
                        if sum(x) >= config.Threshold:
                            cv2.putText(frame,
                                        "-ALERT: People limit exceeded-",
                                        (10, frame.shape[0] - 80),
                                        cv2.FONT_HERSHEY_COMPLEX, 0.5,
                                        (0, 0, 255), 2)
                            if config.ALERT:
                                print("[INFO] Sending email alert..")
                                Mailer().send(config.MAIL)
                                print("[INFO] Alert sent")

                        to.counted = True

            # store the trackable object in our dictionary
            trackableObjects[objectID] = to

            # draw both the ID of the object and the centroid of the
            # object on the output frame
            text = "ID {}".format(objectID)
            cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
            cv2.circle(frame, (centroid[0], centroid[1]), 4, (255, 255, 255),
                       -1)

        # construct a tuple of information we will be displaying on the
        info = [
            ("Exit", totalUp),
            ("Enter", totalDown),
            ("Status", status),
        ]

        info2 = [
            ("Total people inside", x),
        ]

        # Display the output
        for (i, (k, v)) in enumerate(info):
            text = "{}: {}".format(k, v)
            cv2.putText(frame, text, (10, H - ((i * 20) + 20)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)

        for (i, (k, v)) in enumerate(info2):
            text = "{}: {}".format(k, v)
            cv2.putText(frame, text, (265, H - ((i * 20) + 60)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)

        # Initiate a simple log to save data at end of the day
        if config.Log:
            datetimee = [datetime.datetime.now()]
            d = [datetimee, empty1, empty, x]
            export_data = zip_longest(*d, fillvalue='')

            with open('Log.csv', 'w', newline='') as myfile:
                wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
                wr.writerow(("End Time", "In", "Out", "Total Inside"))
                wr.writerows(export_data)

        # show the output frame
        cv2.imshow("Real-Time Monitoring/Analysis Window", frame)
        key = cv2.waitKey(1) & 0xFF

        # if the `q` key was pressed, break from the loop
        if key == ord("q"):
            break

        # increment the total number of frames processed thus far and
        # then update the FPS counter
        totalFrames += 1
        fps.update()

        if config.Timer:
            # Automatic timer to stop the live stream. Set to 8 hours (28800s).
            t1 = time.time()
            num_seconds = (t1 - t0)
            if num_seconds > 28800:
                break

    # stop the timer and display FPS information
    fps.stop()
    print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

    # # if we are not using a video file, stop the camera video stream
    # if not args.get("input", False):
    # 	vs.stop()
    #
    # # otherwise, release the video file pointer
    # else:
    # 	vs.release()

    # close any open windows
    cv2.destroyAllWindows()
예제 #4
0
class detector:
    def __init__(self,
                 prototxt="mobilenet_ssd/MobileNetSSD_deploy.prototxt",
                 model="mobilenet_ssd/MobileNetSSD_deploy.caffemodel",
                 confidence=0.4,
                 skipframes=10):

        print("Initiate detector...")

        self.CLASSES = [
            "background", "aeroplane", "bicycle", "bird", "boat", "bottle",
            "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse",
            "motorbike", "person", "pottedplant", "sheep", "sofa", "train",
            "tvmonitor"
        ]

        self.confidence = confidence
        self.net = cv2.dnn.readNetFromCaffe(prototxt, model)

        #self.vs = VideoStream(src = 0, usePiCamera = True).start()
        self.vs = VideoStream(src=0).start()

        self.W = None
        self.H = None

        self.ct = CentroidTracker(maxDisappeared=40, maxDistance=50)
        self.trackers = []
        self.trackableObjects = {}

        self.totalFrames = 0
        self.skipframes = skipframes

        self.fps = FPS().start()

    def main(self):

        while True:

            frame = self.vs.read()
            frame = frame[1]
            # frame = frame[1] if args.get("input", False) else frame
            frame = imutils.resize(frame, width=250)
            rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

            if self.W is None or self.H is None:
                (self.H, self.W) = frame.shape[:2]

            status = "Waiting"
            rects = []

            if self.totalFrames % self.skipframes == 0:

                status = "Detecting"
                self.trackers = []

                blob = cv2.dnn.blobFromImage(frame, 0.007843, (self.W, self.H),
                                             127.5)
                self.net.setInput(blob)
                detections = self.net.forward()

                for i in np.arange(0, detections.shape[2]):

                    confidence = detections[0, 0, i, 2]

                    if confidence > self.confidence:

                        idx = int(detections[0, 0, i, 1])

                        if self.CLASSES[idx] != "person":
                            continue

                        box = detections[0, 0, i, 3:7] * np.array(
                            [self.W, self.H, self.W, self.H])
                        (startX, startY, endX, endY) = box.astype("int")

                        tracker = dlib.correlation_tracker()
                        rect = dlib.rectangle(startX, startY, endX, endY)
                        tracker.start_track(rgb, rect)

                        self.trackers.append(tracker)

            else:
                for tracker in self.trackers:

                    status = "Tracking"

                    tracker.update(rgb)
                    pos = tracker.get_position()

                    startX = int(pos.left())
                    startY = int(pos.top())
                    endX = int(pos.right())
                    endY = int(pos.bottom())

                    rects.append((startX, startY, endX, endY))

            cv2.line(frame, (0, self.H // 2), (self.W, self.H // 2),
                     (0, 255, 255), 2)

            objects = self.ct.update(rects)

            for (objectID, centroid) in objects.items():

                to = self.trackableObjects.get(objectID, None)

                if to is None:
                    to = TrackableObject(objectID, centroid)

                else:

                    y = [c[1] for c in to.centroids]
                    direction = centroid[1] - np.mean(y)
                    to.centroids.append(centroid)

                    if not to.counted:

                        if direction < 0 and centroid[1] < self.H // 2:
                            totalUp += 1
                            to.counted = True

                        elif direction > 0 and centroid[1] > self.H // 2:
                            totalDown += 1
                            to.counted = True

                self.trackableObjects[objectID] = to

                text = "ID {}".format(objectID)
                cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
                cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 255, 0),
                           -1)

            info = [
                ("Up", totalUp),
                ("Down", totalDown),
                ("Status", status),
            ]

            for (i, (k, v)) in enumerate(info):
                text = "{}: {}".format(k, v)
                cv2.putText(frame, text, (10, self.H - ((i * 20) + 20)),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

            # show the output frame
            cv2.imshow("Frame", frame)
            key = cv2.waitKey(1) & 0xFF

            # if the `q` key was pressed, break from the loop
            if key == ord("q"):
                break

            # increment the total number of frames processed thus far and
            # then update the FPS counter
            self.totalFrames += 1
            self.fps.update()
        # stop the timer and display FPS information
        self.fps.stop()
        print("[INFO] elapsed time: {:.2f}".format(self.fps.elapsed()))
        print("[INFO] approx. FPS: {:.2f}".format(self.fps.fps()))

        self.vs.stop()

        cv2.destroyAllWindows()
예제 #5
0
    def video_check(self):

        detector = cv2.dnn.readNetFromCaffe(
            'face_detection_model/deploy.prototxt',
            'face_detection_model/res10_300x300_ssd_iter_140000.caffemodel')
        #summary
        # load our serialized face embedding model from disk
        print("[INFO] loading face recognizer...")
        embedder = cv2.dnn.readNetFromTorch('openface_nn4.small2.v1.t7')

        # load the actual face recognition model along with the label encoder
        recognizer = pickle.loads(
            open('output/recognizer.pickle', "rb").read())
        le = pickle.loads(open('output/le.pickle', "rb").read())

        # initialize the video stream, then allow the camera sensor to warm up
        print("[INFO] starting video stream...")
        vs = VideoStream(src=0).start()
        time.sleep(2.0)

        #run check for only 15seconds and then stop
        timeout = time.time() + 5

        # start the FPS throughput estimator
        fps = FPS().start()

        # loop over frames from the video file stream
        real_user_list = []
        while True:

            #run check for only 15seconds and then stop
            if time.time() > timeout:
                cv2.destroyWindow("Frame")
                break

            # grab the frame from the threaded video stream
            frame = vs.read()

            # resize the frame to have a width of 600 pixels (while
            # maintaining the aspect ratio), and then grab the image
            # dimensions
            frame = imutils.resize(frame, width=800, height=200)
            (h, w) = frame.shape[:2]

            # construct a blob from the image
            imageBlob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
                                              1.0, (300, 300),
                                              (104.0, 177.0, 123.0),
                                              swapRB=False,
                                              crop=False)

            # apply OpenCV's deep learning-based face detector to localize
            # faces in the input image
            detector.setInput(imageBlob)
            detections = detector.forward()

            #TODO: if 2 faces are detected alert the user of a warning
            # loop over the detections
            for i in range(0, detections.shape[2]):
                # extract the confidence (i.e., probability) associated with
                # the prediction
                confidence = detections[0, 0, i, 2]

                # filter out weak detections
                if confidence > 0.5:
                    # compute the (x, y)-coordinates of the bounding box for
                    # the face
                    box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                    (startX, startY, endX, endY) = box.astype("int")

                    # extract the face ROI
                    face = frame[startY:endY, startX:endX]
                    (fH, fW) = face.shape[:2]

                    # ensure the face width and height are sufficiently large
                    if fW < 20 or fH < 20:
                        continue

                    # construct a blob for the face ROI, then pass the blob
                    # through our face embedding model to obtain the 128-d
                    # quantification of the face
                    faceBlob = cv2.dnn.blobFromImage(face,
                                                     1.0 / 255, (96, 96),
                                                     (0, 0, 0),
                                                     swapRB=True,
                                                     crop=False)
                    embedder.setInput(faceBlob)
                    vec = embedder.forward()

                    # perform classification to recognize the face
                    preds = recognizer.predict_proba(vec)[0]
                    j = np.argmax(preds)
                    proba = preds[j]
                    name = le.classes_[j]

                    # # draw the bounding box of the face along with the
                    # # associated probability
                    # text = "{}: {:.2f}%".format(name, proba * 100)
                    # y = startY - 10 if startY - 10 > 10 else startY + 10
                    # cv2.rectangle(frame, (startX, startY), (endX, endY),
                    #     (0, 0, 255), 2)
                    # cv2.putText(frame, text, (startX, y),
                    #     cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
                    #TODO: Handle if 2 faces are given.
                    #Decision boundary
                    if (name == 'unknown') or (proba * 100) < 50:
                        print("Fraud detected")
                        real_user_list.append(name)
                    else:
                        #cv2.destroyWindow("Frame")
                        real_user_list.append(name)
                        break

            # update the FPS counter
            fps.update()

            # show the output frame
            cv2.imshow("Frame", frame)
            key = cv2.waitKey(1) & 0xFF

            # if the `q` key was pressed, break from the loop
            if key == ord("q"):
                break

        # stop the timer and display FPS information
        fps.stop()
        print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
        print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

        # do a bit of cleanup
        cv2.destroyAllWindows()
        vs.stop()
        print(real_user_list)

        try:
            Counter(real_user_list).most_common(1)[0][0] == 'unknown'
        except IndexError:
            if self.countter != 0:
                messagebox._show(
                    "Verification Info!",
                    "Face Id match failed! You have {} trials left".format(
                        self.countter))
                self.countter = self.countter - 1
                self.video_check()
            else:
                messagebox._show(
                    "Verification Info!",
                    "Face Id match failed! You cannot withdraw at this time, try again later"
                )
                self.begin_page()
                self.countter = 2

        else:
            if Counter(real_user_list).most_common(1)[0][0] == 'unknown':
                if self.countter != 0:
                    messagebox._show(
                        "Verification Info!",
                        "Face Id match failed! You have {} trials left".format(
                            self.countter))
                    self.countter = self.countter - 1
                    self.video_check()
                else:
                    messagebox._show(
                        "Verification Info!",
                        "Face Id match failed! You cannot withdraw at this time, try again later"
                    )
                    self.begin_page()
                    self.countter = 2

            else:
                self.real_user = int(
                    Counter(real_user_list).most_common(1)[0][0])
                messagebox._show("Verification Info!", "Face Id match!")
                self.password_verification()
예제 #6
0
    def tracker_speed(self):
        # construct the argument parser and parse the arguments
        #ap = argparse.ArgumentParser()
        #ap.add_argument("-c", "--conf", required=True,
        #	help="Path to the input configuration file")
        #ap.add_argument("-i", "--input", required=True,
        #	help="Path to the input video file")
        #args = vars(ap.parse_args())

        # load the configuration file
        #conf = Conf(args["conf"])
        conteudo = open(conf_path).read()

        conf = json.loads(conteudo)

        # initialize the list of class labels MobileNet SSD was trained to
        # detect
        CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
            "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
            "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
            "sofa", "train", "tvmonitor"]

        # check to see if the Dropbox should be used
        if conf["use_dropbox"]:
            # connect to dropbox and start the session authorization process
            client = dropbox.Dropbox(conf["dropbox_access_token"])
            print("[SUCCESS] dropbox account linked")

        # load our serialized model from disk
        print("[INFO] loading model...")
        net = cv2.dnn.readNetFromCaffe(conf["prototxt_path"],
            conf["model_path"])
        #net.setPreferableTarget(cv2.dnn.DNN_TARGET_MYRIAD)

        # initialize the video stream and allow the camera sensor to warmup
        print("[INFO] warming up camera...")
        #vs = VideoStream(src=0).start()
        vs = cv2.VideoCapture(data_path)
        tm.sleep(2.0)

        # initialize the frame dimensions (we'll set them as soon as we read
        # the first frame from the video)
        H = None
        W = None

        # instantiate our centroid tracker, then initialize a list to store
        # each of our dlib correlation trackers, followed by a dictionary to
        # map each unique object ID to a TrackableObject
        ct = CentroidTracker(maxDisappeared=conf["max_disappear"],
            maxDistance=conf["max_distance"])
        trackers = []
        trackableObjects = {}

        # keep the count of total number of frames
        totalFrames = 0

        # initialize the log file
        logFile = None

        # initialize the list of various points used to calculate the avg of
        # the vehicle speed
        points = [("A", "B"), ("B", "C"), ("C", "D")]

        # start the frames per second throughput estimator
        fps = FPS().start()

        # loop over the frames of the stream
        while True:
            # grab the next frame from the stream, store the current
            # timestamp, and store the new date
            ret, frame  = vs.read()
            ts = datetime.now()
            newDate = ts.strftime("%m-%d-%y")

            # check if the frame is None, if so, break out of the loop
            if frame is None:
                break

            # if the log file has not been created or opened
            if logFile is None:
                # build the log file path and create/open the log file
                logPath = os.path.join(conf["output_path"], conf["csv_name"])
                logFile = open(logPath, mode="a")

                # set the file pointer to end of the file
                pos = logFile.seek(0, os.SEEK_END)

                # if we are using dropbox and this is a empty log file then
                # write the column headings
                if conf["use_dropbox"] and pos == 0:
                    logFile.write("Year,Month,Day,Time,Speed (in KMPH),ImageID\n")

                # otherwise, we are not using dropbox and this is a empty log
                # file then write the column headings
                elif pos == 0:
                    logFile.write("Year,Month,Day,Time (in KMPH),Speed\n")

            # resize the frame
            frame = imutils.resize(frame, width=conf["frame_width"])
            rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

            # if the frame dimensions are empty, set them
            if W is None or H is None:
                (H, W) = frame.shape[:2]
                meterPerPixel = conf["distance"] / W

            # initialize our list of bounding box rectangles returned by
            # either (1) our object detector or (2) the correlation trackers
            rects = []

            # check to see if we should run a more computationally expensive
            # object detection method to aid our tracker
            if totalFrames % conf["track_object"] == 0:
                # initialize our new set of object trackers
                trackers = []

                # convert the frame to a blob and pass the blob through the
                # network and obtain the detections
                blob = cv2.dnn.blobFromImage(frame, size=(300, 300),
                    ddepth=cv2.CV_8U)
                net.setInput(blob, scalefactor=1.0/127.5, mean=[127.5,
                    127.5, 127.5])
                detections = net.forward()

                # loop over the detections
                for i in np.arange(0, detections.shape[2]):
                    # extract the confidence (i.e., probability) associated
                    # with the prediction
                    confidence = detections[0, 0, i, 2]

                    # filter out weak detections by ensuring the `confidence`
                    # is greater than the minimum confidence
                    if confidence > conf["confidence"]:
                        # extract the index of the class label from the
                        # detections list
                        idx = int(detections[0, 0, i, 1])

                        # if the class label is not a car, ignore it
                        if CLASSES[idx] != "car":
                            continue

                        # if the class label is not a motorbike, ignore it
                        #if CLASSES[idx] != "motorbike":
                        #	continue

                        # compute the (x, y)-coordinates of the bounding box
                        # for the object
                        box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
                        (startX, startY, endX, endY) = box.astype("int")

                        # construct a dlib rectangle object from the bounding
                        # box coordinates and then start the dlib correlation
                        # tracker
                        tracker = dlib.correlation_tracker()
                        rect = dlib.rectangle(startX, startY, endX, endY)
                        tracker.start_track(rgb, rect)

                        # add the tracker to our list of trackers so we can
                        # utilize it during skip frames
                        trackers.append(tracker)

            # otherwise, we should utilize our object *trackers* rather than
            # object *detectors* to obtain a higher frame processing
            # throughput
            else:
                # loop over the trackers
                for tracker in trackers:
                    # update the tracker and grab the updated position
                    tracker.update(rgb)
                    pos = tracker.get_position()

                    # unpack the position object
                    startX = int(pos.left())
                    startY = int(pos.top())
                    endX = int(pos.right())
                    endY = int(pos.bottom())

                    # add the bounding box coordinates to the rectangles list
                    rects.append((startX, startY, endX, endY))

            # use the centroid tracker to associate the (1) old object
            # centroids with (2) the newly computed object centroids
            objects = ct.update(rects)

            # loop over the tracked objects
            for (objectID, centroid) in objects.items():
                # check to see if a trackable object exists for the current
                # object ID
                to = trackableObjects.get(objectID, None)

                # if there is no existing trackable object, create one
                if to is None:
                    to = TrackableObject(objectID, centroid)

                # otherwise, if there is a trackable object and its speed has
                # not yet been estimated then estimate it
                elif not to.estimated:
                    # check if the direction of the object has been set, if
                    # not, calculate it, and set it
                    if to.direction is None:
                        y = [c[0] for c in to.centroids]
                        direction = centroid[0] - np.mean(y)
                        to.direction = direction

                    # if the direction is positive (indicating the object
                    # is moving from left to right)
                    if to.direction > 0:
                        # check to see if timestamp has been noted for
                        # point A
                        if to.timestamp["A"] == 0 :
                            # if the centroid's x-coordinate is greater than
                            # the corresponding point then set the timestamp
                            # as current timestamp and set the position as the
                            # centroid's x-coordinate
                            if centroid[0] > conf["speed_estimation_zone"]["A"]:
                                to.timestamp["A"] = ts
                                to.position["A"] = centroid[0]

                        # check to see if timestamp has been noted for
                        # point B
                        elif to.timestamp["B"] == 0:
                            # if the centroid's x-coordinate is greater than
                            # the corresponding point then set the timestamp
                            # as current timestamp and set the position as the
                            # centroid's x-coordinate
                            if centroid[0] > conf["speed_estimation_zone"]["B"]:
                                to.timestamp["B"] = ts
                                to.position["B"] = centroid[0]

                        # check to see if timestamp has been noted for
                        # point C
                        elif to.timestamp["C"] == 0:
                            # if the centroid's x-coordinate is greater than
                            # the corresponding point then set the timestamp
                            # as current timestamp and set the position as the
                            # centroid's x-coordinate
                            if centroid[0] > conf["speed_estimation_zone"]["C"]:
                                to.timestamp["C"] = ts
                                to.position["C"] = centroid[0]

                        # check to see if timestamp has been noted for
                        # point D
                        elif to.timestamp["D"] == 0:
                            # if the centroid's x-coordinate is greater than
                            # the corresponding point then set the timestamp
                            # as current timestamp, set the position as the
                            # centroid's x-coordinate, and set the last point
                            # flag as True
                            if centroid[0] > conf["speed_estimation_zone"]["D"]:
                                to.timestamp["D"] = ts
                                to.position["D"] = centroid[0]
                                to.lastPoint = True

                    # if the direction is negative (indicating the object
                    # is moving from right to left)
                    elif to.direction < 0:
                        # check to see if timestamp has been noted for
                        # point D
                        if to.timestamp["D"] == 0 :
                            # if the centroid's x-coordinate is lesser than
                            # the corresponding point then set the timestamp
                            # as current timestamp and set the position as the
                            # centroid's x-coordinate
                            if centroid[0] < conf["speed_estimation_zone"]["D"]:
                                to.timestamp["D"] = ts
                                to.position["D"] = centroid[0]

                        # check to see if timestamp has been noted for
                        # point C
                        elif to.timestamp["C"] == 0:
                            # if the centroid's x-coordinate is lesser than
                            # the corresponding point then set the timestamp
                            # as current timestamp and set the position as the
                            # centroid's x-coordinate
                            if centroid[0] < conf["speed_estimation_zone"]["C"]:
                                to.timestamp["C"] = ts
                                to.position["C"] = centroid[0]

                        # check to see if timestamp has been noted for
                        # point B
                        elif to.timestamp["B"] == 0:
                            # if the centroid's x-coordinate is lesser than
                            # the corresponding point then set the timestamp
                            # as current timestamp and set the position as the
                            # centroid's x-coordinate
                            if centroid[0] < conf["speed_estimation_zone"]["B"]:
                                to.timestamp["B"] = ts
                                to.position["B"] = centroid[0]

                        # check to see if timestamp has been noted for
                        # point A
                        elif to.timestamp["A"] == 0:
                            # if the centroid's x-coordinate is lesser than
                            # the corresponding point then set the timestamp
                            # as current timestamp, set the position as the
                            # centroid's x-coordinate, and set the last point
                            # flag as True
                            if centroid[0] < conf["speed_estimation_zone"]["A"]:
                                to.timestamp["A"] = ts
                                to.position["A"] = centroid[0]
                                to.lastPoint = True

                    # check to see if the vehicle is past the last point and
                    # the vehicle's speed has not yet been estimated, if yes,
                    # then calculate the vehicle speed and log it if it's
                    # over the limit
                    if to.lastPoint and not to.estimated:
                        # initialize the list of estimated speeds
                        estimatedSpeeds = []

                        # loop over all the pairs of points and estimate the
                        # vehicle speed
                        for (i, j) in points:
                            # calculate the distance in pixels
                            d = to.position[j] - to.position[i]
                            distanceInPixels = abs(d)

                            # check if the distance in pixels is zero, if so,
                            # skip this iteration
                            if distanceInPixels == 0:
                                continue

                            # calculate the time in hours
                            t = to.timestamp[j] - to.timestamp[i]
                            timeInSeconds = abs(t.total_seconds())
                            timeInHours = timeInSeconds / (60 * 60)

                            # calculate distance in kilometers and append the
                            # calculated speed to the list
                            distanceInMeters = distanceInPixels * meterPerPixel
                            distanceInKM = distanceInMeters / 1000
                            estimatedSpeeds.append(distanceInKM / timeInHours)

                        # calculate the average speed
                        to.calculate_speed(estimatedSpeeds)

                        # set the object as estimated
                        to.estimated = True
                        print("[INFO] Speed of the vehicle that just passed"\
                            " is: {:.2f} KMPH".format(to.speedKMPH))
                        #str = ("{:.2f}".format(to.speedKMPH))
                        self.set_velocidade(int(to.speedKMPH))

                # store the trackable object in our dictionary
                trackableObjects[objectID] = to

                # draw both the ID of the object and the centroid of the
                # object on the output frame
                text = "ID {}".format(objectID)
                cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10)
                    , cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
                cv2.circle(frame, (centroid[0], centroid[1]), 4,
                    (0, 255, 0), -1)

                # check if the object has not been logged
                if not to.logged:
                    # check if the object's speed has been estimated and it
                    # is higher than the speed limit
                    if to.estimated and to.speedKMPH > conf["speed_limit"]:
                        # set the current year, month, day, and time
                        year = ts.strftime("%Y")
                        month = ts.strftime("%m")
                        day = ts.strftime("%d")
                        time = ts.strftime("%H:%M:%S")

                        # check if dropbox is to be used to store the vehicle
                        # image
                        if conf["use_dropbox"]:
                            # initialize the image id, and the temporary file
                            imageID = ts.strftime("%H%M%S%f")
                            tempFile = TempFile()
                            cv2.imwrite(tempFile.path, frame)

                            # create a thread to upload the file to dropbox
                            # and start it
                            t = Thread(target=upload_file, args=(tempFile,
                                client, imageID,))
                            t.start()

                            # log the event in the log file
                            info = "{},{},{},{},{},{}\n".format(year, month,
                                day, time, to.speedKMPH, imageID)
                            logFile.write(info)

                        # otherwise, we are not uploading vehicle images to
                        # dropbox
                        else:
                            # log the event in the log file
                            info = "{},{},{},{},{}\n".format(year, month,
                                day, time, to.speedKMPH)
                            logFile.write(info)

                        # set the object has logged
                        to.logged = True

            # if the *display* flag is set, then display the current frame
            # to the screen and record if a user presses a key
            if conf["display"]:
                cv2.imshow("frame", frame)
                key = cv2.waitKey(1) & 0xFF

                # if the `q` key is pressed, break from the loop
                if key == ord("q"):
                    break

            # increment the total number of frames processed thus far and
            # then update the FPS counter
            totalFrames += 1
            fps.update()

        # stop the timer and display FPS information
        fps.stop()
        print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
        print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

        # check if the log file object exists, if it does, then close it
        if logFile is not None:
            logFile.close()

        # close any open windows
        cv2.destroyAllWindows()

        # clean up
        print("[INFO] cleaning up...")
        vs.release()
예제 #7
0
class LiveStreamer(object):
    """
    """
    def __init__(self, cam_id):
        self.win_name = 'Pi Live Streaming'
        self.cam, self.cap = init_pi_cam(self.win_name)
        self.fps      = FPS().start()
        self.in_q     = Queue()
        self.out_q    = Queue()
        self.stopped  = False
        self.threads  = []

    def start(self):
         th = Thread(target=self.frame_preprocess)
         th.start()
         self.threads.append(th)

         th = Thread(target=self.frame_process)
         th.start()
         self.threads.append(th)

         th = Thread(target=self.stream)
         th.start()
         self.threads.append(th)

    def frame_preprocess(self):
        for pi_frame in self.cam.capture_continuous(self.cap, format="bgr", use_video_port = True):
            if self.stopped is True: break
            frame = pi_frame.array
            self.in_q.put(frame)
            if frame is None: break
        self.stopped = True

    def frame_process(self):
        while True:
            if self.stopped is True: break
            frame = self.in_q.get()
            if frame is None: break
            self.fps.update()
            self.out_q.put(frame)
            self.in_q.task_done()
        self.stopped = True

    def stream(self):
        while True:
            frame = self.out_q.get()
            if frame is None: break
            cv2.imshow(self.win_name, frame)
            self.out_q.task_done()
        self.stopped = True

    def stop(self):
        self.stopped = True
        self.in_q.put(None)
        self.out_q.put(None)
        for th in self.threads:
            th.join()

        self.fps.stop()
        print("Elapsed    = {:.2f} sec".format(self.fps.elapsed()))
        print("Frame Rate = {:.2f} fps".format(self.fps.fps()))    
        self.cam.close()
예제 #8
0
def evaluateallframescreatesubmission(base_dir,
                                      filename,
                                      outputsubmissionfilepath,
                                      outputfile="./output_video1.mp4"):
    Final_array = np.load(base_dir / filename,
                          allow_pickle=True,
                          mmap_mode='r')
    data_array = Final_array['arr_0']
    array_len = len(data_array)
    # 20, 200 frames in one file, downsample by 10
    print("Final_array lenth:", array_len)
    print("Final_array type:", type(data_array))  # numpy.ndarray

    objects = metrics_pb2.Objects()  #submission objects

    frame_width = 1920
    frame_height = 1280
    out = cv2.VideoWriter(outputfile,
                          cv2.VideoWriter_fourcc('M', 'P', '4', 'V'), 2,
                          (frame_width, frame_height))
    fps = FPS().start()

    wod_latency_submission.initialize_model()

    required_field = wod_latency_submission.DATA_FIELDS
    print(required_field)

    for frameid in range(array_len):
        #frameid = 5
        print("frameid:", frameid)
        # {'key':key, 'context_name':context_name, 'framedict':framedict}
        convertedframesdict = data_array[frameid]
        frame_timestamp_micros = convertedframesdict['key']
        context_name = convertedframesdict['context_name']
        framedict = convertedframesdict['framedict']
        # 10017090168044687777_6380_000_6400_000
        #print('context_name:', context_name)
        #print('frame_timestamp_micros:', frame_timestamp_micros)  # 1550083467346370

        #result = wod_latency_submission.run_model(framedict[required_field[0]], framedict[required_field[1]])
        #result = wod_latency_submission.run_model(**framedict)
        Front_image = framedict[required_field[0]]
        start_time = time.time()
        result = wod_latency_submission.run_model(Front_image)
        end_time = time.time()
        elapsed_time = end_time - start_time
        print('Inference time: ' + str(elapsed_time) + 's')
        #print(result)

        createsubmisionobject(objects, result['boxes'], result['classes'],
                              result['scores'], context_name,
                              frame_timestamp_micros)

        #Save the original image
        #output_path = "./test.png"
        #visualization_util.save_image_array_as_png(Front_image, output_path)

        image_np_with_detections = Front_image.copy()
        visualization_util.visualize_boxes_and_labels_on_image_array(
            image_np_with_detections,
            result['boxes'],
            result['classes'],
            result['scores'],
            category_index,
            use_normalized_coordinates=False,
            max_boxes_to_draw=200,
            min_score_thresh=Threshold,
            agnostic_mode=False)
        #visualization_util.save_image_array_as_png(image_np_with_detections, outputfile)

        name = './Test_data/frame' + str(frameid) + '.jpg'
        #print ('Creating\...' + name)
        #cv2.imwrite(name, image_np_with_detections) #write to image folder
        fps.update()
        out.write(image_np_with_detections)

    # stop the timer and display FPS information
    fps.stop()
    print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
    out.release()

    submission = submission_pb2.Submission()
    submission.task = submission_pb2.Submission.DETECTION_2D
    submission.account_name = '*****@*****.**'
    submission.authors.append('Kaikai Liu')
    submission.affiliation = 'None'
    submission.unique_method_name = 'torchvisionfaster'
    submission.description = 'none'
    submission.method_link = "empty method"
    submission.sensor_type = submission_pb2.Submission.CAMERA_ALL
    submission.number_past_frames_exclude_current = 0
    submission.number_future_frames_exclude_current = 0
    submission.inference_results.CopyFrom(objects)
    f = open(outputsubmissionfilepath, 'wb')  #output submission file
    f.write(submission.SerializeToString())
    f.close()

    now = datetime.datetime.now()
    print("Finished validation, current date and time : ")
    print(now.strftime("%Y-%m-%d %H:%M:%S"))
예제 #9
0
파일: main.py 프로젝트: foxness/noxvision
def main():
    video = cv2.VideoCapture(input_video)
    frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))

    analyzer = Analyzer()
    engine = Engine(frame_width,
                    frame_height,
                    confidence_threshold=confidence_threshold,
                    face_confidence_threshold=face_confidence_threshold)
    writer = None
    frames_processed = 0

    fps = FPS().start()

    while True:
        (grabbed, frame) = video.read()

        if frame is None:
            # end of video
            break

        engine.process(frame)
        objs = engine.get_objects()
        faces = engine.get_faces()
        analyzer.add_frame(objs, faces)

        for obj in objs:
            draw_box_text(frame, obj.rect, obj.label)
        for face in faces:
            draw_face(frame, face.rect)

        if frame_width is None or frame_height is None:
            (frame_height, frame_width) = frame.shape[:2]

        if output_video is not None and writer is None:
            fourcc = cv2.VideoWriter_fourcc(*"MJPG")
            writer = cv2.VideoWriter(output_video, fourcc, 30,
                                     (frame_width, frame_height), True)

        if frames_processed % report_frame_period == 0:
            progress = frames_processed / frame_count
            print("frame {}/{} ({:.0%})".format(frames_processed, frame_count,
                                                progress))

            if report_progress_files:
                file = open(progress_filename, 'w')
                file.write("{}".format(int(progress * 100)))
                file.close()

        # info = [
        #     ("Status", status)
        # ]

        # for (i, (k, v)) in enumerate(info):
        #     text = "{}: {}".format(k, v)
        #     cv2.putText(frame, text, (10, frame_height - ((i * 20) + 20)),
        #         cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

        if writer is not None:
            writer.write(frame)

        if draw:
            cv2.imshow("Frame", frame)

        key = cv2.waitKey(1) & 0xFF
        if key == ord("q"):
            break

        frames_processed += 1
        fps.update()

    fps.stop()
    print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

    if writer is not None:
        writer.release()

    video.release()

    if draw:
        cv2.destroyAllWindows()

    if output_analysis:
        analyzer.analyze()
        serialized = analyzer.serialize()
        file = open(output_analysis, 'w')
        file.write(serialized)
        file.close()

    if report_progress_files:
        os.remove(progress_filename)
예제 #10
0
def helmet(video):
    print("Working Wait It may Take Some Minutes! ")
    FILE_OUTPUT = app.config['Third_Eye_Out']+video
    
    # initialize the list of class labels MobileNet SSD was trained to detect
    # generate a set of bounding box colors for each class
    CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
    #CLASSES = ['motorbike', 'person']
    COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

    # load our serialized model from disk
    print("[INFO] loading model...")
    net = cv2.dnn.readNetFromCaffe('helmetModel/MobileNetSSD_deploy.prototxt.txt', 'helmetModel/MobileNetSSD_deploy.caffemodel')

    print('Loading helmet model...')
    loaded_model = load_model('helmetModel/new_helmet_model.h5')
    loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])

    # initialize the video stream,
    print("[INFO] starting video stream...")

    # Loading the video file
    videopath=os.path.join(app.config['Third_Eye_Media'],'%s'%video)

    print(videopath)
    cap = cv2.VideoCapture(videopath) 

    currentFrame = 0

    # Get current width of frame
    width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)   # float
    # Get current height of frame
    height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) # float


    # Define the codec and create VideoWriter object
    fourcc = cv2.VideoWriter_fourcc(*'X264')
    out = cv2.VideoWriter(FILE_OUTPUT,fourcc, 20.0, (int(width),int(height)))

    # time.sleep(2.0)

    # Starting the FPS calculation
    fps = FPS().start()

    # loop over the frames from the video stream
    # i = True
    while True:
        # i = not i
        # if i==True:

        try:
            # grab the frame from the threaded video stream and resize it
            # to have a maxm width and height of 600 pixels
            ret, frame = cap.read()

            # resizing the images
            frame = imutils.resize(frame, width=600, height=600)

            # grab the frame dimensions and convert it to a blob
            (h, w) = frame.shape[:2]
            
            # Resizing to a fixed 300x300 pixels and normalizing it.
            # Creating the blob from image to give input to the Caffe Model
            blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5)

            # pass the blob through the network and obtain the detections and predictions
            net.setInput(blob)

            detections = net.forward()  # getting the detections from the network
            
            persons = []
            person_roi = []
            motorbi = []
            
            # loop over the detections
            for i in np.arange(0, detections.shape[2]):
                # extract the confidence associated with the prediction
                confidence = detections[0, 0, i, 2]
                
                # filter out weak detections by ensuring the confidence
                # is greater than minimum confidence
                if confidence > 0.5:
                    
                    # extract index of class label from the detections
                    idx = int(detections[0, 0, i, 1])
                    
                    if idx == 15:
                        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                        (startX, startY, endX, endY) = box.astype("int")
                        # roi = box[startX:endX, startY:endY/4] 
                        # person_roi.append(roi)
                        persons.append((startX, startY, endX, endY))

                    if idx == 14:
                        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                        (startX, startY, endX, endY) = box.astype("int")
                        motorbi.append((startX, startY, endX, endY))

            xsdiff = 0
            xediff = 0
            ysdiff = 0
            yediff = 0
            p = ()
            
            for i in motorbi:
                mi = float("Inf")
                for j in range(len(persons)):
                    xsdiff = abs(i[0] - persons[j][0])
                    xediff = abs(i[2] - persons[j][2])
                    ysdiff = abs(i[1] - persons[j][1])
                    yediff = abs(i[3] - persons[j][3])

                    if (xsdiff+xediff+ysdiff+yediff) < mi:
                        mi = xsdiff+xediff+ysdiff+yediff
                        p = persons[j]
                        # r = person_roi[j]


                if len(p) != 0:

                    # display the prediction
                    label = "{}".format(CLASSES[14])
    # 	            print("[INFO] {}".format(label))
    # 	            cv2.rectangle(frame, (i[0], i[1]), (i[2], i[3]), COLORS[14], 2)            #Vehicle Body
                    y = i[1] - 15 if i[1] - 15 > 15 else i[1] + 15
    # 	            cv2.putText(frame, label, (i[0], y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[14], 2)   
                    label = "{}".format(CLASSES[15])
    # 	            print("[INFO] {}".format(label))

    # 	            cv2.rectangle(frame, (p[0], p[1]), (p[2], p[3]), COLORS[15], 2)           #Person Body
                    y = p[1] - 15 if p[1] - 15 > 15 else p[1] + 15

                    roi = frame[p[1]:p[1]+(p[3]-p[1])//4, p[0]:p[2]]
                    # print(roi)
                    if len(roi) != 0:
                        img_array = cv2.resize(roi, (50,50))
                        gray_img = cv2.cvtColor(img_array, cv2.COLOR_BGR2GRAY)
                        img = np.array(gray_img).reshape(1, 50, 50, 1)
                        img = img/255.0
                        # cv2.imshow("img",img)
                        # print(img)
                        prediction = loaded_model.predict_proba([img])
                        
                        cv2.rectangle(frame, (p[0], p[1]), (p[0]+(p[2]-p[0]), p[1]+(p[3]-p[1])//4), [0,0,255], 2)
                        if(round(prediction[0][0],2))<=.90:
                                cv2.putText(frame, "No Helmet", (p[0], y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, [0,0,255], 2)
    #                             print(round(prediction[0][0],2))
                                        
    #             cv2.putText(frame, "Helmet", (p[0], y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[0], 2)
                
        except:
            pass

        cv2.imshow('Frame', frame)  # Displaying the frame
        # Saves for video
        out.write(frame)
        key = cv2.waitKey(1) & 0xFF

        if key == ord('q'): # if 'q' key is pressed, break from the loop
            break
        
        # update the FPS counter
        fps.update()
            

    # stop the timer and display FPS information
    fps.stop()

    print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
    
    cv2.destroyAllWindows()
    cap.release()   # Closing the video stream 
    out.release()
    return "Video Saved!"
예제 #11
0
	def main_process(self):
		Base={
			"max_disappear": 30,

			"max_distance": 200,

			"track_object": 4,

			"confidence": 0.4,

			"frame_height": 400,

			"line_point" : 125,

			"display": "true",

			"model_path": "MobileNetSSD_deploy.caffemodel",

			"prototxt_path": "MobileNetSSD_deploy.prototxt",

			"output_path": "output",

			"csv_name": "log.csv"
		}

		CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
			"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
			"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
			"sofa", "train", "tvmonitor"]

		print("[INFO] loading model...")
		net = cv2.dnn.readNetFromCaffe(Base["prototxt_path"],
			Base["model_path"])


		print("[INFO] warming up camera...")
		vs = cv2.VideoCapture(self.filename)

		H = None
		W = None

		ct = CentroidTracker(maxDisappeared=Base["max_disappear"],
			maxDistance=Base["max_distance"])
		trackers = []
		trackableObjects = {}

		totalFrames = 0

		logFile = None

		points = [("A", "B"), ("B", "C"), ("C", "D")]

		fps = FPS().start()

		while True:
			ret, frame  = vs.read()
			ts = datetime.now()
			newDate = ts.strftime("%m-%d-%y")
			minut=ts.minute

			if frame is None:
				break

			frame = imutils.resize(frame, height=Base["frame_height"])
			rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

			if W is None or H is None:
				(H, W) = frame.shape[:2]

			rects = []

			if totalFrames % Base["track_object"] == 0:
				trackers = []

				blob = cv2.dnn.blobFromImage(frame, size=(300, 300),
					ddepth=cv2.CV_8U)
				net.setInput(blob, scalefactor=1.0/127.5, mean=[127.5,
					127.5, 127.5])
				detections = net.forward()

				# loop over the detections
				for i in np.arange(0, detections.shape[2]):
					confidence = detections[0, 0, i, 2]

					if confidence > Base["confidence"]:
						idx = int(detections[0, 0, i, 1])

						if CLASSES[idx] != "car":
							if CLASSES[idx] != "bus":
								if CLASSES[idx] != "motorbike":
									continue

						box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
						(startX, startY, endX, endY) = box.astype("int")

						tracker = dlib.correlation_tracker()
						rect = dlib.rectangle(int(startX), int(startY), int(endX), int(endY))
						tracker.start_track(rgb, rect)
						cv2.rectangle(frame, (startX, startY), (endX, endY), (0,225,0), 4)
						trackers.append(tracker)

			else:
				for tracker in trackers:
					tracker.update(rgb)
					pos = tracker.get_position()

					startX = int(pos.left())
					startY = int(pos.top())
					endX = int(pos.right())
					endY = int(pos.bottom())
					cv2.rectangle(frame, (startX, startY), (endX, endY), (0,225,0), 4)
					rects.append((startX, startY, endX, endY))

			objects = ct.update(rects)

			for (objectID, centroid) in objects.items():
				to = trackableObjects.get(objectID, None)

				if to is None:
					to = TrackableObject(objectID, centroid)

				elif not to.estimated:
					 
					y = [c[1] for c in to.centroids]
					direction = centroid[1] - np.mean(y)
					to.direction = direction
					if(to.direction>0):
						tet = "down"
						cv2.putText(frame, tet, (centroid[0] - 10, centroid[1] - 20)
							, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
						if minut%2==0:
							if not to.belowline:
								if(centroid[1] < self.line_point):
									to.belowline = "F"
								else:
									to.belowline = "T"

							else:
								if(to.belowline == "F" and centroid[1] > self.line_point):
									if not to.savethefile:
										#crop = frame[startX:endX, startY:endY]
										cv2.imwrite('output/violation'+str(self.saveno)+'.jpg', frame)
										to.savethefile = 1
										self.saveno += 1
									cv2.circle(frame, (centroid[0]+10, centroid[1]), 4,
									(0, 0, 255), -1)

						else:
							if to.belowline:
								to.belowline = None
							

					elif(to.direction<0):
						tet = "up"
						cv2.putText(frame, tet, (centroid[0] - 10, centroid[1] - 20)
							, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
			
					elif(to.direction==0):
						tet = "stationary"
						cv2.putText(frame, tet, (centroid[0] - 10, centroid[1] - 20)
							, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

				trackableObjects[objectID] = to

				text = "ID {}".format(objectID)
				cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10)
					, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
				cv2.circle(frame, (centroid[0], centroid[1]), 4,
					(0, 255, 0), -1)
				if minut%2==0:
					cv2.line(frame, (0, self.line_point), (2000, self.line_point), (0,0,255), 4)
				else:
					cv2.line(frame, (0, self.line_point), (2000, self.line_point), (0,255,0), 4)

			if Base["display"]=="true":
				cv2.imshow("frame", frame)
				key = cv2.waitKey(1) & 0xFF

				if key == ord("q"):
					break

			
			totalFrames += 1
			fps.update()

		fps.stop()
		print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
		print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

		cv2.destroyAllWindows()
		vs.release()
예제 #12
0
def main():
    pts1 = np.array([[119, 1190], [1986, 1130], [163, 2958], [1962, 3033]])
    pts2 = np.array([[109, 859], [2028, 751], [218, 2619], [1971, 2685]])
    pts3 = np.array([[44, 907], [1901, 859], [57, 2554], [1824, 2784]])
    pts4 = np.array([[66, 1024], [1938, 963], [118, 2767], [1881, 2877]])

    vs1 = WebcamVideoStream(src=gstreamer_pipeline(sensor_id=0),
                            device=cv2.CAP_GSTREAMER).start()
    vs2 = WebcamVideoStream(src=gstreamer_pipeline(sensor_id=1),
                            device=cv2.CAP_GSTREAMER).start()
    vs3 = WebcamVideoStream(src=gstreamer_pipeline(sensor_id=2),
                            device=cv2.CAP_GSTREAMER).start()
    vs4 = WebcamVideoStream(src=gstreamer_pipeline(sensor_id=3),
                            device=cv2.CAP_GSTREAMER).start()

    rect1 = order_points(pts1)
    rect2 = order_points(pts2)
    rect3 = order_points(pts3)
    rect4 = order_points(pts4)

    dst1, maxWidth1, maxHeight1 = four_point_transform(rect1)
    dst2, maxWidth2, maxHeight2 = four_point_transform(rect2)
    dst3, maxWidth3, maxHeight3 = four_point_transform(rect3)
    dst4, maxWidth4, maxHeight4 = four_point_transform(rect4)

    M1 = cv2.getPerspectiveTransform(rect1, dst1)
    M2 = cv2.getPerspectiveTransform(rect2, dst2)
    M3 = cv2.getPerspectiveTransform(rect3, dst3)
    M4 = cv2.getPerspectiveTransform(rect4, dst4)

    print("[INFO] sampling THREADED frames from webcam...")
    fps = FPS().start()
    while True:
        frame1 = vs1.read()
        frame2 = vs2.read()
        frame3 = vs3.read()
        frame4 = vs4.read()

        warped1 = cv2.warpPerspective(frame1, M1, (maxWidth1, maxHeight1))
        warped2 = cv2.warpPerspective(frame2, M2, (maxWidth2, maxHeight2))
        warped3 = cv2.warpPerspective(frame3, M3, (maxWidth3, maxHeight3))
        warped4 = cv2.warpPerspective(frame4, M4, (maxWidth4, maxHeight4))

        cv2.imshow('frame1', warped1)
        cv2.imshow('frame2', warped2)
        cv2.imshow('frame3', warped3)
        cv2.imshow('frame4', warped4)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

        fps.update()
    # stop the timer and display FPS information
    fps.stop()
    print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

    cv2.destroyAllWindows()
    vs1.stop()
    vs2.stop()
    vs3.stop()
    vs4.stop()
def main():

  parser = argparse.ArgumentParser(
      formatter_class=argparse.ArgumentDefaultsHelpFormatter)


  parser.add_argument('-t', '--threshold', type=float, default=0.5,
                      help='Score threshold for detected objects.')
  parser.add_argument('-c', '--count', type=int, default=5,
                      help='Number of times to run inference')
  parser.add_argument('-tpu', '--enable-tpu', action='store_true',
                      help='Whether TPU is enabled or not')
  parser.add_argument('-objects', '--detect-objects', type=str, default="bird")
  parser.add_argument('-debug', '--enable-debug', action='store_true',
                      help='Whether Debug is enabled or not - Webcamera viewed is displayed when in this mode')

  args = parser.parse_args()

  objects_to_detect = args.detect_objects

  if args.enable_tpu:
      model_dir = "/output/edgetpu/"
  else:
      "model_dir = "/output/tflite/"

  labels = load_labels(args.model)
  interpreter = make_interpreter(args.model, args.enable_tpu)
  interpreter.allocate_tensors()
  # begin detect video

  # initialize the camera and grab a reference to the raw camera capture
  # camera = PiCamera()
  resolution = (1280, 720)
  # camera.resolution = resolution
  # camera.framerate = 30

  freq = cv2.getTickFrequency()
  # rawCapture = PiRGBArray(camera, size=resolution)

  fps = FPS().start()
  piVideoStream = VideoStream(usePiCamera=True, resolution=resolution, framerate=30).start()

  # enable circular stream
  cameraCircularStream = enableCircularCameraRecording(piVideoStream)

  time.sleep(1)
  while True:
      t0 = cv2.getTickCount()

      frame = piVideoStream.read()
      fps.update()

      image_rgb_np = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

      # when passing the size to the method we reverse the tuple
      scale = detect.set_input(interpreter, image_rgb_np.shape[:2][::-1],
                               lambda size: cv2.resize(image_rgb_np,size, interpolation=cv2.INTER_AREA))
      interpreter.invoke()
      objs = detect.get_output(interpreter, args.threshold, scale)

      # we only draw bounding boxes and detection labels in the
      # frame if we are in debug mode
      if objs and args.enable_debug:
        draw_objects(frame, objs, objects_to_detect, labels)

      # we only record to video file if not in debug mode
      if  not args.enable_debug and detected_object(objs, objects_to_detect, labels):
        log_detected_objects(objs, objects_to_detect, labels)
        # record 20 s video clip - it will freeze main thread
        recordVideoFromCamera(piVideoStream,cameraCircularStream)
      # in debug mode we show the object detection boxes


      if args.enable_debug:
          cv2.imshow('frame', frame)

      if cv2.waitKey(1) & 0xFF == ord('q'):
          break
  fps.stop()
  piVideoStream.stop()

  print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
  print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

  cv2.destroyAllWindows()
예제 #14
0
def read_live_barcode(detection_threshold=50):
    """Live read the barcode and returns data"""
    ##detection_threshold = 50 # 1 sec
    ##detection_threshold = 100 # 2 sec

    detection_time = 'no detection'

    # initialize the video stream and allow the camera sensor to warm up
    print("[INFO] starting video stream...")
    vs = VideoStream(src=0).start()
    # vs = VideoStream(usePiCamera=True).start()
    time.sleep(2.0)

    # start the FPS counter
    fps = FPS().start()

    counter_i = 0
    # loop over frames from the video file stream
    previous_data = None
    while True:
        # grab the frame from the threaded video stream and resize it
        # to 500px (to speedup processing)
        frame = vs.read()
        frame = imutils.resize(frame, width=500)

        # convert the input frame from (1) BGR to grayscale (for face
        # detection) and (2) from BGR to RGB (for face recognition)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        im = gray

        decodedObjects = decode(im, log=True)
        frame = markBarcode(frame, decodedObjects)
        data = actual_data(decodedObjects)

        # draw the predicted face name on the image
        #cv2.rectangle(frame, (left, top), (right, bottom),	(0, 255, 0), 2)
        #y = top - 15 if top - 15 > 15 else top + 15
        #cv2.putText(frame, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 2)

        # display the image to our screen
        cv2.imshow("Frame", frame)
        key = cv2.waitKey(1) & 0xFF

        # if the `q` key was pressed, break from the loop
        if key == 27:
            break

        # update the FPS counter
        fps.update()

        #barcode detection program
        if data:
            if previous_data == data:
                if counter_i == 1: start_time = time.time()
                counter_i += 1
            else:
                counter_i = 0
        previous_data = data

        if counter_i > detection_threshold:
            detection_time = time.time() - start_time
            break

    # stop the timer and display FPS information
    fps.stop()
    print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

    # do a bit of cleanup
    cv2.destroyAllWindows()
    vs.stop()

    message = data
    return message, detection_time
예제 #15
0
    def eyeBlinkStartThFixed(self):
        # inizializzazione di counter e total, counter conta i frame consecutivi in EAR < threshold, total il numero di
        # eyeblink
        COUNTER = 0
        TOTAL = 0
        # dichiarazione e inizializzazione dei threshold che vanno da 0.10 a 0.29
        ear_th = []
        for threshold in np.arange(0.10, 0.30, 0.01):
            ear_th.append(0)

        print(self.inputType)

        detector = dlib.get_frontal_face_detector()
        predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

        # inputType ha il suo interno il path + il video
        # poi inizia il video stream.
        fvs = FileVideoStream(self.inputType).start()
        time.sleep(1.0)

        # avvia il timer fps
        fps = FPS().start()

        num_frames = 0

        # si cicla sui frame presi dal video stream per un massimo di 150 frame, visto che è sufficiente per capire
        # se si è verificato o meno un eyeblink.
        while fvs.more() and num_frames < 150:

            frame = fvs.read()

            try:
                frame = imutils.resize(frame, width=300)
            except Exception as e:
                print(str(e))

            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

            # frame = np.dstack([frame, frame, frame])

            # viene richiamata la funzione che va ad analizzare ogni singolo frame per vedere se ci è stato
            # un eyeblink o meno
            try:

                eyesdetect, COUNTER, ear_th = self.eye_blink_video_fixedTh(frame, detector,
                                                                           predictor, COUNTER, ear_th)
            except Exception as e:
                print(str(e))
                continue

            # viene aggiornato fps e incrementato il numero di frame.
            fps.update()
            fps.stop()
            print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
            print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
            num_frames += 1

        cv2.destroyAllWindows()
        fvs.stop()
        # ritorna la lista dei valori relativi ai threshold
        return ear_th
예제 #16
0
def recog(data):
    fa = cv2.CascadeClassifier('faces.xml')
    process = 0
    cap = cv2.VideoCapture(0)
    fps = FPS().start()
    while True:
        ret, frame = cap.read()
        # for testing on sample data, remove above two lines and use belwo three lines
        #faces = os.listdir("faces")
        # for i in faces:
        # frame=cv2.imread('faces/'+i)
        frame = cv2.flip(frame, 1)
        frame = imutils.resize(frame, width=500)
        if (process % 15 is 0):
            #face_locations = face_recognition.face_locations(rgb_frame)
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            rects = fa.detectMultiScale(gray,
                                        scaleFactor=1.1,
                                        minNeighbors=6,
                                        minSize=(30, 30))
            face_locations = [(y, x + w, y + h, x) for (x, y, w, h) in rects]
            face_encodings = face_recognition.face_encodings(
                rgb_frame, face_locations)
        for (top, right, bottom,
             left), face_encoding in zip(face_locations, face_encodings):
            #matches = face_recognition.compare_faces(data["encodings"], face_encoding,tolerance=0.55)
            name = "No Match"
            mean = {name: 0}
            face_distances = face_recognition.face_distance(
                data["encodings"], face_encoding)
            matches = [(i < 0.52) for i in face_distances]
            if True in matches:
                matchedIdxs = [i for (i, b) in enumerate(matches) if b]
                counts = {}
                mean = {}
                for i in matchedIdxs:
                    name = data["names"][i]
                    counts[name] = counts.get(name, 0) + 1
                    mean[name] = (mean.get(name, 0) + face_distances[i])
                for i in mean:
                    mean[i] /= counts[i]
                name = min(mean, key=mean.get)
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 1)

            cv2.rectangle(frame, (left, bottom + 20), (right, bottom),
                          (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, '{:.2f}'.format(mean[name]),
                        (left + 6, top + 15), font, 0.5, (255, 255, 255), 1)
            cv2.putText(frame, name, (left + 5, bottom + 15), font, 0.5,
                        (255, 255, 255), 1)
        process += 1
        cv2.imshow('Video', frame)
        if cv2.waitKey(10) & 0xFF == ord('q'):
            break
        fps.update()
    fps.stop()
    print("Elasped time: {:.2f}".format(fps.elapsed()))
    print("Approx. FPS: {:.2f}".format(fps.fps()))

    cap.release()
    cv2.destroyAllWindows()
    return mean, face_distances
예제 #17
0
    def eyeBlinkStart(self):
        # inizializzazione di counter e total, counter conta i frame consecutivi in EAR < threshold, total il numero di
        # eyeblink
        COUNTER = 0
        TOTAL = 0

        # se inputType contiene un path per un video allora...
        if self.inputType is not None:

            ear_top = 0

            history = ' '
            print(self.inputType)
            detector = dlib.get_frontal_face_detector()
            predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")


            # avvia il thread del video stream

            fvs = FileVideoStream(self.inputType).start()
            time.sleep(1.0)

            # avvia il timer fps
            fps = FPS().start()

            # fileStream = True

            num_frames = 0

            # si cicla sui frame presi dal video stream per un massimo di 150 frame, visto che è sufficiente per capire
            # se si è verificato o meno un eyeblink.
            while fvs.more() and num_frames < 150:

                frame = fvs.read()
                # ridimensionamento del frame a 300 di width
                try:
                    frame = imutils.resize(frame, width=300)
                except Exception as e:
                    print(str(e))

                # il frame viene convertito in scala di grigi
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

                # frame = np.dstack([frame, frame, frame])
                # viene richiamata la funzione che va ad analizzare ogni singolo frame per vedere se ci è stato
                # un eyeblink o meno
                try:
                    eyesdetect, COUNTER, TOTAL, ear_top = self.eye_blink_video(frame, detector, predictor,
                                                                               COUNTER, TOTAL, ear_top)
                except Exception as e:
                    print(str(e))
                    continue

                # history è una cronologia degli stati dell'occhio che vengono presi da ogni frame, può essere usata per
                # vedere l'andamento frame-by-frame.
                history += eyesdetect
                print(history)
                # se si verifica un eyeblink ritorniamo True
                if TOTAL > 0:
                    cv2.destroyAllWindows()
                    fvs.stop()
                    return True

                # viene aggiornato fps e incrementato il numero di frame.
                fps.update()
                fps.stop()
                print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
                print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
                num_frames += 1

            # usciti dal while se non si è verificato Eyeblink ritorniamo False
            cv2.destroyAllWindows()
            fvs.stop()
            if TOTAL == 0:
                return False
        # se inputType è vuoto significa che usiamo la webcam
        elif self.inputType is None:
            # acquisiamo da webcam
            cap = cv2.VideoCapture(0)

            history = ''

            detector = dlib.get_frontal_face_detector()
            predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
            ear_top = 0
            while True:

                ret, frame = cap.read()
                # viene richiamata la funzione che va ad analizzare ogni singolo per vedere se ci è stato
                # un eyeblink o meno
                eyedetect, TOTAL, COUNTER, ear_top = self.eye_blink_cam(self, frame, ret, detector, predictor,
                                                                        COUNTER, TOTAL, ear_top)

                # history è una cronologia degli stati dell'occhio che vengono presi da ogni frame, può essere usata per
                # vedere l'andamento frame-by-frame.
                history += eyedetect
                # se total è maggiore di 0 significa che un eyeblink è avvenuto e ritorniamo true
                if TOTAL >= 1:
                    cv2.putText(frame, "Real", (0, 450), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3, cv2.LINE_AA)
                    cap.release()
                    cv2.destroyAllWindows()
                    print("EYEBLINK: REAL")
                    return True
                # se ciò non avviene per 200 frame ritorniamo false
                elif len(history) > 200:
                    print(history)
                    result = self.isBlinking(history, 3)
                    print(result)

                    cv2.putText(frame, "Fake", (0, 450), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3, cv2.LINE_AA)
                    cap.release()
                    cv2.destroyAllWindows()
                    print("EYEBLINK: FAKE")
                    return False
                else:
                    cv2.putText(frame, "Checking...", (0, 450), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 165, 255), 3,
                                cv2.LINE_AA)

            cv2.imshow("Frame", frame)
            cv2.waitKey(1)

            # if the `q` key was pressed, break from the loop
        cap.release()
        cv2.destroyAllWindows()
예제 #18
0
# Grab the frame from the stream and resize it to have a max
# width of 400 pixels
    (grabbed, frame) = stream.read()
  #  frame = imutils.resize(frame, width=400)

# Check to see if the frame should be displayed to our stream
    if args["display"] > 0:
        cv2.imshow("Frame", frame)
        key = cv2.waitKey(1) & 0xFF
    
# Update the FPS counter
    fps.update()
    
# Stop the timer and display FPS information
    fps.stop()
    print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx FPS: {:.2f}".format(fps.fps()))
    
# Cleanup
    stream.release()
    cv2.destroyAllWindows()
    
    
# Create a threaded video stream, allow the camera sensor to warm up,
# and start the FPS counter
print("[INFO] sampling THREADED frames from the webcam...")
vs = WebcamVideoStream(src=0).start()
fps = FPS().start()

# Loop over some frames, this time using the threaded stream
while fps._numFrames < args["num_frames"]:
예제 #19
0
def text_video():

    # initialize the original frame dimensions, new frame dimensions,
    # and ratio between the dimensions
    (W, H) = (None, None)
    (newW, newH) = (width, height)
    (rW, rH) = (None, None)

    # define the two output layer names for the EAST detector model that
    # we are interested -- the first is the output probabilities and the
    # second can be used to derive the bounding box coordinates of text
    layerNames = ["feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"]

    # load the pre-trained EAST text detector
    print("[INFO] loading EAST text detector...")
    net = cv2.dnn.readNet(east)

    # if a video path was not supplied, grab the reference to the web cam

    print("[INFO] starting video stream...")
    vs = VideoStream(src=0).start()
    time.sleep(1.0)

    # start the FPS throughput estimator
    fps = FPS().start()

    # loop over frames from the video stream
    while True:
        # grab the current frame, then handle if we are using a
        # VideoStream or VideoCapture object
        frame = vs.read()

        # check to see if we have reached the end of the stream
        if frame is None:
            break

        # resize the frame, maintaining the aspect ratio
        frame = imutils.resize(frame, width=1000)
        orig = frame.copy()

        # if our frame dimensions are None, we still need to compute the
        # ratio of old frame dimensions to new frame dimensions
        if W is None or H is None:
            (H, W) = frame.shape[:2]
            rW = W / float(newW)
            rH = H / float(newH)

        # resize the frame, this time ignoring aspect ratio
        frame = cv2.resize(frame, (newW, newH))

        # construct a blob from the frame and then perform a forward pass
        # of the model to obtain the two output layer sets
        blob = cv2.dnn.blobFromImage(frame,
                                     1.0, (newW, newH),
                                     (123.68, 116.78, 103.94),
                                     swapRB=True,
                                     crop=False)
        net.setInput(blob)
        (scores, geometry) = net.forward(layerNames)

        # decode the predictions, then  apply non-maxima suppression to
        # suppress weak, overlapping bounding boxes
        (rects, confidences) = decode_predictions(scores, geometry)
        boxes = non_max_suppression(np.array(rects), probs=confidences)

        # loop over the bounding boxes
        for (startX, startY, endX, endY) in boxes:
            # scale the bounding box coordinates based on the respective
            # ratios
            startX = int(startX * rW)
            startY = int(startY * rH)
            endX = int(endX * rW)
            endY = int(endY * rH)

            # draw the bounding box on the frame
            cv2.rectangle(orig, (startX, startY), (endX, endY), (0, 255, 0), 2)

            im_c = orig[startY:endY, startX:endX]

            im_c = cv2.cvtColor(im_c, cv2.COLOR_BGR2GRAY)
            im_c = cv2.threshold(im_c, 0, 255,
                                 cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
            cv2.imwrite('test.png', im_c)

            im_text = pytesseract.image_to_string('test.png', config=config)
            cv2.putText(orig, im_text, (startX - 10, startY - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)

            print(im_text)
            os.remove('test.png')

            cv2.imshow("Text Detected", im_c)

        # update the FPS counter
        fps.update()

        # show the output frame
        cv2.imshow("Text Detection", orig)
        key = cv2.waitKey(1) & 0xFF

        # if the `q` key was pressed, break from the loop
        if key == ord("q"):
            break

    # stop the timer and display FPS information
    fps.stop()
    print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

    # if we are using a webcam, release the pointer
    vs.stop()

    # close all windows
    cv2.destroyAllWindows()
def main():
    camera = VideoStream(src=0).start()
    # camera = VideoStream(usePiCamera=True).start()
    time.sleep(2.0)
    fps = FPS().start()
    count_frame = 1

    # Define predictor model
    net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
    predictor = dlib.shape_predictor(args["landmarks_predictor"])

     # Change width and height of aligned face if necessary, default is 160x160
    faceAlignment = FaceAligner(predictor, desiredFaceWidth = 160, desiredFaceHeight = 160)
    confidence = args["confidence"]

    # connect to server on local computer
    # local host IP '127.0.0.1'
    host = '223.195.37.238'

    # Define the port on which you want to connect
    port = 12345

    while True:
        print("Frame ", count_frame)
        data_send = ImageData()
        aligned_face_bytestream_temp = []
        box_posx_temp = []
        box_posy_temp = []
        box_w_temp = []
        box_h_temp = []

        frame = camera.read()
        frame = imutils.resize(frame, width = 800)

        cv2.imshow("Frame", frame)
        fps.update()

        key = cv2.waitKey(1)
        if key & 0xFF == ord("q"):
            break

        # For capturing an image, press button c
        elif key & 0xFF == ord("c"):
            # Do the face detection forward
            blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0), False, False)
            net.setInput(blob)
            detections = net.forward()
            box_posx, box_posy, box_w, box_h, aligned_faces = detect_faces(frame, detections, faceAlignment, confidence)

            print("Send an image at frame", count_frame)

            # Detect faces and their information
            box_posx_temp.extend(box_posx)
            box_posy_temp.extend(box_posy)
            box_w_temp.extend(box_w)
            box_h_temp.extend(box_h)
            aligned_face_bytestream_temp.extend(aligned_faces)

            # Convert into bytestream
            data_send.img_bytestream = convert_img_to_bytestream(frame)
            data_send.aligned_face_bytestream = pickle.dumps(aligned_face_bytestream_temp)
            data_send.box_posx = pickle.dumps(box_posx_temp)
            data_send.box_posy = pickle.dumps(box_posy_temp)
            data_send.box_w = pickle.dumps(box_w_temp)
            data_send.box_h = pickle.dumps(box_h_temp)
            data_string = pickle.dumps(data_send)

            # Send the information to server
            s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            s.connect((host, port))
            s.sendall(data_string)
            s.close()

        count_frame = count_frame + 1


    fps.stop()
    print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
    cv2.destroyAllWindows()
    camera.stop()
예제 #21
0
def main():
    # TensorFlow
    graph = load_graph(args.frozen_model_file)
    image_tensor = graph.get_tensor_by_name('image_tensor:0')
    output_tensor = graph.get_tensor_by_name('generate_output/output:0')
    config = tf.ConfigProto()
    config.gpu_options.allow_growth=True
    sess = tf.Session(graph=graph, config=config)

    if args.video is not None:
        cap = WebcamVideoStream(args.video).start()
    else:
        cap = WebcamVideoStream(args.video_source).start()

    if args.video_out is not None:
        fourcc = cv2.VideoWriter_fourcc(*'XVID')
        out = cv2.VideoWriter(args.video_out, fourcc, args.fps, (int(512*args.scale),int(256*args.scale)))

    fps = FPS().start()

    landmark_toggle = False

    last_image = np.zeros((256,256), dtype=np.uint8)

    count = 0

    while(True):
        ret, frame = cap.read()

        if ret is True:       
            if args.skip and count % args.skip != 0:
                print("Skipping",count)
                continue
            else:
                if args.zoom > 1:
                    o_h, o_w, _ = frame.shape
                    frame = cv2.resize(frame, None, fx=args.zoom, fy=args.zoom)
                    h, w, _ = frame.shape
                    off_h, off_w = int((h - o_h) / 2), int((w - o_w) / 2)
                    frame = frame[off_h:h-off_h, off_w:w-off_w, :]


                if args.downsample > 1:
                    downsample_scale = args.downsample
                else:
                    # Auto-scale to CROP_SIZE
                    small_side = min(frame.shape[0], frame.shape[1])
                    downsample_scale = 1 / (CROP_SIZE / small_side)
                

                # resize image and detect face
                frame_resize = cv2.resize(frame, None, fx=1 / downsample_scale, fy=1 / downsample_scale)
                count += 1
                print("Frame:",count,"Shape:",frame_resize.shape)

                # print(frame_resize.shape)
                # print (frame_resize.shape)
                gray = cv2.cvtColor(frame_resize, cv2.COLOR_BGR2GRAY)
                faces = detector(gray, 1)
                black_image = np.zeros(frame_resize.shape, np.uint8)
                # black_image = np.zeros(frame.shape, np.uint8)

                for face in faces:
                    detected_landmarks = predictor(gray, face).parts()
                    landmarks = [[p.x, p.y] for p in detected_landmarks]
                    color = (255, 255, 255)
                    thickness = 3

                    if args.points:
                        jaw = landmarks[0:17]
                        left_eyebrow = landmarks[22:27]
                        right_eyebrow = landmarks[17:22]
                        nose_bridge = landmarks[27:31]
                        lower_nose = landmarks[30:35]
                        left_eye = landmarks[42:48]
                        right_eye = landmarks[36:42]
                        outer_lip = landmarks[48:60]
                        inner_lip = landmarks[60:68]
                        for part in [jaw, left_eyebrow, right_eyebrow, nose_bridge, lower_nose, left_eye, right_eye, outer_lip, inner_lip]:
                            for x,y in part:
                                cv2.circle(black_image, (x, y), 1, (255, 255, 255), -1)
                    else:
                        jaw = reshape_for_polyline(landmarks[0:17])
                        left_eyebrow = reshape_for_polyline(landmarks[22:27])
                        right_eyebrow = reshape_for_polyline(landmarks[17:22])
                        nose_bridge = reshape_for_polyline(landmarks[27:31])
                        lower_nose = reshape_for_polyline(landmarks[30:35])
                        left_eye = reshape_for_polyline(landmarks[42:48])
                        right_eye = reshape_for_polyline(landmarks[36:42])
                        outer_lip = reshape_for_polyline(landmarks[48:60])
                        inner_lip = reshape_for_polyline(landmarks[60:68])
                        cv2.polylines(black_image, [jaw], False, color, thickness)
                        cv2.polylines(black_image, [left_eyebrow], False, color, thickness)
                        cv2.polylines(black_image, [right_eyebrow], False, color, thickness)
                        cv2.polylines(black_image, [nose_bridge], False, color, thickness)
                        cv2.polylines(black_image, [lower_nose], True, color, thickness)
                        cv2.polylines(black_image, [left_eye], True, color, thickness)
                        cv2.polylines(black_image, [right_eye], True, color, thickness)
                        cv2.polylines(black_image, [outer_lip], True, color, thickness)
                        cv2.polylines(black_image, [inner_lip], True, color, thickness)

                # generate prediction
                if len(faces) > 0:
                    combined_image = np.concatenate([resize(black_image), resize(frame_resize)], axis=1)
                    image_rgb = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB)  # OpenCV uses BGR instead of RGB
                    generated_image = sess.run(output_tensor, feed_dict={image_tensor: image_rgb})
                    image_bgr = cv2.cvtColor(np.squeeze(generated_image), cv2.COLOR_RGB2BGR)
                    image_normal = np.concatenate([resize(frame_resize), image_bgr], axis=1)
                    image_landmark = np.concatenate([resize(black_image), image_bgr], axis=1)
                        
                    if landmark_toggle or args.display_landmark == 1:
                        img = image_landmark
                    else:
                        img = image_normal
                elif args.skip_fails:
                    # Don't show/write frames where no face is detected
                    continue
                else:
                    img = last_image

            last_image = img

            if args.scale != 1:
                img = cv2.resize(img, None, fx=args.scale, fy=args.scale)

            if args.video_out is not None:
                out.write(img)

            if args.no_gui is False:
                cv2.imshow('face2face', img)

            fps.update()

            key = cv2.waitKey(10) 
            if key & 0xFF == ord('q'):
                break
            elif key & 0xFF == ord('m'):
                landmark_toggle = not landmark_toggle
            
        else:
            # We're done here
            break

    fps.stop()
    print('[INFO] elapsed time (total): {:.2f}'.format(fps.elapsed()))
    print('[INFO] approx. FPS: {:.2f}'.format(fps.fps()))

    sess.close()
    cap.stop()
    
    if args.video_out is not None:
        out.release()
    
    cv2.destroyAllWindows()
예제 #22
0
def recognize():
    detector = cv2.dnn.readNetFromCaffe(DEPLOY_PROTOTXT_PATH,
                                        RES10_300X300_PATH)

    #print("[INFO] loading face recognizer...")
    #embedder = cv2.dnn.readNetFromTorch(args["embedding_model"])

    recognizer = pickle.loads(open(RECOGNIZER_PATH, "rb").read())
    le = pickle.loads(open(LABEL_ENCODER_PATH, "rb").read())

    print("[INFO] starting video stream...")
    vs = VideoStream(src=0).start()
    time.sleep(2.0)

    fps = FPS().start()
    tstart = time.time()

    while True:
        frame = vs.read()
        frame = imutils.resize(frame, width=600)

        (h, w) = frame.shape[:2]

        imageBlob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
                                          1.0, (300, 300),
                                          (104.0, 177.0, 123.0),
                                          swapRB=False,
                                          crop=False)

        detector.setInput(imageBlob)
        detections = detector.forward()

        for i in range(0, detections.shape[2]):
            confidence = detections[0, 0, i, 2]

            if confidence > CONFIDENCE:
                box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                (startX, startY, endX, endY) = box.astype("int")

                face = frame[startY:endY, startX:endX]
                (fH, fW) = face.shape[:2]

                if fW < 20 or fH < 20:
                    continue

                #faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
                #   (96, 96), (0, 0, 0), swapRB=True, crop=False)
                #embedder.setInput(faceBlob)
                #vec = embedder.forward()
                coor = [((startY, startX + (endX - startX),
                          startY + (endY - startY), startX))]

                rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                encodings = face_recognition.face_encodings(rgb_frame, coor)

                preds = recognizer.predict_proba(encodings)[0]
                j = np.argmax(preds)
                proba = preds[j]
                name = le.classes_[j]

                text = "{}: {:.2f}%".format(name, proba * 100)
                y = startY - 10 if startY - 10 > 10 else startY + 10
                cv2.rectangle(frame, (startX, startY), (endX, endY),
                              (0, 0, 255), 2)
                cv2.putText(frame, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX,
                            0.45, (0, 0, 255), 2)

        fps.update()

        cv2.imshow("Frame", frame)
        # tcur = time.time()

        # if tcur - tstart > 15 & name != 'unknown' & proba > 0.8:
        #     return name
        # elif tcur - tstart > 60:
        #     return 'unknown'

        key = cv2.waitKey(1) & 0xFF

        if key == ord("q"):
            break

    fps.stop()
    print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

    cv2.destroyAllWindows()
    vs.stop()
예제 #23
0
파일: survvi.py 프로젝트: MShrawn/survvi
        	       	print("[WARNING] Survvi has detected motion from webcam... ");
			disp_state = 1;	# start displaying frame
	
	# check to see if motion  should be displayed to our screen
	if (args["display"] > 0) and (disp_state == 1):
		cv2.imshow("Camera Feed", frame)
		cv2.imshow("Survvi Feed", gray_frame);
		key = cv2.waitKey(1) & 0xFF
	elif (disp_state == 0): 
		# clear screen now that we no longer show images
	 	print("[INFO] Survvi detects no motion from webcam... ");
		cv2.destroyAllWindows();
 		disp_state = 2;
	elif (disp_state == 2):
		pass;
		key = cv2.waitKey(1) & 0xFF;

	# bg_frame = gray_frame;
	# update the FPS counter
	fps.update()
 
# stop the timer and display FPS information
fps.stop()
print("[INFO] Survvi up-time: {:.2f}".format(fps.elapsed()))
print("[INFO] Survvi approx. FPS: {:.2f}".format(fps.fps()))
 
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
# camera.stop();
예제 #24
0
def objectdetection():
    # load model
    prototxt = 'mobilenet_ssd/MobileNetSSD_deploy.prototxt'
    model = 'mobilenet_ssd/MobileNetSSD_deploy.caffemodel'

    #label variable
    #will change it to user input
    labels = "cat"

    #confidence level of model
    confidence = 0.7

    #video input either stream or video file
    video = 0
    #video= 'input/cat.mp4'

    # initialize the list of class labels MobileNet SSD was trained to
    # detect
    CLASSES = [
        "background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
        "car", "cat", "chair", "cow", "diningtable", "dog", "horse",
        "motorbike", "person", "pottedplant", "sheep", "sofa", "train",
        "tvmonitor"
    ]

    # load our serialized model from disk
    print("[INFO] loading model...")
    net = cv2.dnn.readNetFromCaffe(prototxt, model)

    # initialize the video stream, dlib correlation tracker, output video
    # writer, and predicted class label
    print("[INFO] starting video stream...")
    vs = cv2.VideoCapture(video)
    tracker = None
    writer = None
    label = ""

    # start the frames per second throughput estimator
    fps = FPS().start()

    # loop over frames from the video file stream
    while True:
        # grab the next frame from the video file
        (grabbed, frame) = vs.read()

        # check to see if we have reached the end of the video file
        if frame is None:
            break

        # resize the frame for faster processing and then convert the
        # frame from BGR to RGB ordering (dlib needs RGB ordering)
        frame = imutils.resize(frame, width=600)
        rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        # if our correlation object tracker is None we first need to
        # apply an object detector to seed the tracker with something
        # to actually track
        if tracker is None:
            # grab the frame dimensions and convert the frame to a blob
            (h, w) = frame.shape[:2]
            blob = cv2.dnn.blobFromImage(frame, 0.007843, (w, h), 127.5)

            # pass the blob through the network and obtain the detections
            # and predictions
            net.setInput(blob)
            detections = net.forward()

            # ensure at least one detection is made
            if len(detections) > 0:
                # find the index of the detection with the largest
                # probability -- out of convenience we are only going
                # to track the first object we find with the largest
                # probability; future examples will demonstrate how to
                # detect and extract *specific* objects
                i = np.argmax(detections[0, 0, :, 2])

                # grab the probability associated with the object along
                # with its class label
                conf = detections[0, 0, i, 2]
                label = CLASSES[int(detections[0, 0, i, 1])]

                # filter out weak detections by requiring a minimum
                # confidence
                if conf > confidence and label == labels:
                    # compute the (x, y)-coordinates of the bounding box
                    # for the object
                    box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                    (startX, startY, endX, endY) = box.astype("int")

                    # construct a dlib rectangle object from the bounding
                    # box coordinates and then start the dlib correlation
                    # tracker
                    tracker = dlib.correlation_tracker()
                    rect = dlib.rectangle(startX, startY, endX, endY)
                    tracker.start_track(rgb, rect)

                    # draw the bounding box and text for the object
                    cv2.rectangle(frame, (startX, startY), (endX, endY),
                                  (0, 255, 0), 2)
                    cv2.putText(frame, label, (startX, startY - 15),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)

        # otherwise, we've already performed detection so let's track
        # the object
        else:
            # update the tracker and grab the position of the tracked
            # object
            tracker.update(rgb)
            pos = tracker.get_position()

            # unpack the position object
            startX = int(pos.left())
            startY = int(pos.top())
            endX = int(pos.right())
            endY = int(pos.bottom())

            # draw the bounding box from the correlation object tracker
            cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0),
                          2)
            cv2.putText(frame, label, (startX, startY - 15),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)

        # check to see if we should write the frame to disk
        if writer is not None:
            writer.write(frame)

        # show the output frame
        cv2.imshow("Frame", frame)
        key = cv2.waitKey(1) & 0xFF

        # if the `q` key was pressed, break from the loop
        if key == ord("q"):
            break

        # update the FPS counter
        fps.update()

    # stop the timer and display FPS information
    fps.stop()
    print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

    # check to see if we need to release the video writer pointer
    if writer is not None:
        writer.release()

    # do a bit of cleanup
    cv2.destroyAllWindows()
    vs.release()
예제 #25
0
        if (prevNames.__contains__(n) == False):
            logins.append(n)
    for n in prevNames:
        if (names.__contains__(n) == False):
            logouts.append(n)

    # send inforrmation to prompt, only if something has changes
    if (logins.__len__() > 0):
        printjson("login", {"names": logins})

    if (logouts.__len__() > 0):
        printjson("logout", {"names": logouts})

    # set this names as new prev names for next iteration
    prevNames = names

    key = cv2.waitKey(1) & 0xFF
    # if the `q` key was pressed, break from the loop
    if key == ord("q") or closeSafe == True:
        break

    time.sleep(args["interval"] / 1000)

# stop the timer and display FPS information
fps.stop()
printjson("status", "elasped time: {:.2f}".format(fps.elapsed()))
printjson("status", "approx. FPS: {:.2f}".format(fps.fps()))

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
예제 #26
0
fps = FPS().start()

# This will run while there is a new frame in the video file or
# while the user do not press the "q" (quit) keyboard button.
while True:
    # Capture the frame
    retval, frame = capture.read()

    # Update the FPS counter.
    fps.update()

    # Check if there is a valid frame.
    if not retval:
        break

    # Display the resulting frame.
    cv2.imshow("Video", frame)

    key = cv2.waitKey(1)
    if key & 0xFF == ord("q"):
        break

# Stop the timer and display FPS information.
fps.stop()
print("Elasped time: {:.2f}".format(fps.elapsed()))
print("Camera framerate: {:.2f}".format(fps.fps()))

# When everything done, release the capture object.
capture.release()
cv2.destroyAllWindows()
예제 #27
0
def main():
    width = 800
    height = 600

    # construct the argument parser and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-p",
                    "--shape-predictor",
                    required=True,
                    help="path to facial landmark predictor")
    ap.add_argument("-v", "--video", required=True, help="path to input video")
    #ap.add_argument("-n", "--num-frames", type=int, default=2000,
    #    help="# of frames to loop over for FPS test")
    args = vars(ap.parse_args())

    #initialize dlib's face detector (HOG-based) and then create
    # the facial landmark predictor
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(args["shape_predictor"])
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))

    # load the input image, resize it, and convert it to grayscale
    #cap = cv2.VideoCapture(args["video"])
    print("[INFO] starting video file thread...")
    cap = cv2.VideoCapture(args["video"])
    #time.sleep(1)

    # start the FPS timer
    fps = FPS().start()

    window_name = "cctv"
    cv2.namedWindow(window_name, WINDOW_NORMAL)
    cv2.resizeWindow(window_name, width, height)

    if cap.isOpened():
        ret, image = cap.read()
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        # Assign new height and width for ROI
        (xr, yr, wr, hr) = cv2.boundingRect(gray)
        startYROI = 3 * hr / 5
        endYROI = hr - 1 * hr / 20
    else:
        print "Camera is not open"

    while ret:
        cv2.rectangle(image, (0, startYROI), (wr, endYROI), (0, 255, 0), 2)
        roi_image = image[startYROI:endYROI, 0:wr]
        #image = cv2.imread(args["image"])
        #image = cv2.resize(image, (width, height), interpolation = cv2.INTER_CUBIC)
        #image_scaled = cv2.resize(image, (600, 500), interpolation=cv2.INTER_AREA)
        gray = cv2.cvtColor(roi_image, cv2.COLOR_BGR2GRAY)
        #pil_gray = Image.fromarray(gray)
        #pil_gray = pil_gray.resize((width, height), Image.BICUBIC)
        #cv_gray = np.array(pil_gray)

        #roi = image[]

        # detect faces in the grayscale image
        rects = detector(gray, 0)
        # loop over the face detections
        for (i, rect) in enumerate(rects):
            # determine the facial landmarks for the face region, then
            # convert the facial landmark (x, y)-coordinates to a NumPy array
            shape = predictor(gray, rect)
            shape = face_utils.shape_to_np(shape)

            # convert dlib's rectangle to a OpenCV-style bounding box
            # [i.e., (x, y, w, h)], then draw the face bounding box
            (x, y, w, h) = face_utils.rect_to_bb(rect)
            cv2.rectangle(image, (x, (y + startYROI)),
                          (x + w, (y + startYROI) + h), (0, 255, 0), 2)

            # show the face number
            cv2.putText(image, "Face #{}".format(i + 1),
                        (x - 10, y + startYROI - 10), cv2.FONT_HERSHEY_SIMPLEX,
                        0.5, (0, 255, 0), 2)

            # loop over the (x, y)-coordinates for the facial landmarks
            # and draw them on the image
            for (x, y) in shape:
                cv2.circle(image, (x, (y + startYROI)), 1, (0, 0, 255), -1)
        # show the output image with the face detections + facial landmarks
        cv2.imshow(window_name, image)
        ret, image = cap.read()

        if cv2.waitKey(1) & 0xff == ord('q'):
            break
        fps.update()

    fps.stop()
    print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
    # do a bit of cleanup
    cap.release()
    cv2.destroyAllWindows()
예제 #28
0
    def run(self):
        self.signals.changeTitleBox.emit(" Sol Toplam\n"
                                         "Sağ Toplam\n"
                                         "       Durum")
        self.vs = cv2.VideoCapture(self.video_source)
        detection_graph = tf.Graph()
        with detection_graph.as_default():
            od_graph_def = tf.GraphDef()
            with tf.gfile.GFile(self.model_path, 'rb') as fid:
                serialized_graph = fid.read()
                od_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(od_graph_def, name='')

        label_map = label_map_util.load_labelmap(self.label_path)
        categories = label_map_util.convert_label_map_to_categories(
            label_map, max_num_classes=self.num_classes, use_display_name=True)
        category_index = label_map_util.create_category_index(categories)

        W = None
        H = None
        ct = CentroidTracker(maxDisappeared=40, maxDistance=50)
        trackers = []
        trackableObjects = {}

        totalFrames = 0
        skip_frame = 10

        fps = FPS().start()

        # Operation
        with detection_graph.as_default():
            with tf.Session(graph=detection_graph) as sess:
                while True:
                    ret, self.frame = self.vs.read()
                    if self.frame is None or self.stopped:
                        print("Video stream ended.")
                        break

                    self.frame = imutils.resize(
                        self.frame,
                        width=1000)  # Less data we have, faster we are.
                    rgb = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB)
                    self.frame = rgb

                    if W is None or H is None:
                        (H, W, ch) = self.frame.shape

                    self.status = "Bekliyor"
                    rects = []

                    if totalFrames % skip_frame == 0:
                        self.status = "Saptanıyor"
                        trackers = []

                        frame_expanded = np.expand_dims(self.frame, axis=0)
                        image_tensor = detection_graph.get_tensor_by_name(
                            'image_tensor:0')
                        boxes = detection_graph.get_tensor_by_name(
                            'detection_boxes:0')
                        scores = detection_graph.get_tensor_by_name(
                            'detection_scores:0')
                        classes = detection_graph.get_tensor_by_name(
                            'detection_classes:0')
                        num_detections = detection_graph.get_tensor_by_name(
                            'num_detections:0')

                        (boxes, scores, classes, num_detections) = sess.run(
                            [boxes, scores, classes, num_detections],
                            feed_dict={image_tensor: frame_expanded})

                        ymin = int((boxes[0][0][0] * H))
                        xmin = int((boxes[0][0][1] * W))
                        ymax = int((boxes[0][0][2] * H))
                        xmax = int((boxes[0][0][3] * W))

                        box_area = (xmax - xmin) * (ymax - ymin)
                        total_area = W * H
                        # For eliminating the false positives.
                        if box_area > total_area * 0.5:
                            ymin, xmin, xmax, ymax = (None, None, None, None)

                        if ymin is not None:
                            tracker = dlib.correlation_tracker()
                            rect = dlib.rectangle(xmin, ymin, xmax, ymax)
                            tracker.start_track(rgb, rect)

                            trackers.append(tracker)

                    else:

                        for tracker in trackers:
                            self.status = "Takip Ediliyor"

                            tracker.update(rgb)
                            pos = tracker.get_position()

                            xmin = int(pos.left())
                            ymin = int(pos.top())
                            xmax = int(pos.right())
                            ymax = int(pos.bottom())

                            rects.append((xmin, ymin, xmax, ymax))

                    # cv2.line(self.frame, (W // 2, 0), (W // 2, H), (0, 255, 255), 2)

                    objects = ct.update(rects)

                    for (objectID, centroid) in objects.items():
                        trackable_obj = trackableObjects.get(objectID, None)

                        if trackable_obj is None:
                            trackable_obj = TrackableObject(objectID, centroid)

                        else:
                            x = [c[0] for c in trackable_obj.centroids]
                            direction = centroid[0] - np.mean(x)
                            trackable_obj.centroids.append(centroid)

                            if not trackable_obj.counted:
                                # if the direction is negative (indicating the object
                                # is moving up) AND the centroid is above the center
                                # line, count the object
                                if direction < 0 and centroid[0] < int(
                                        W * 0.25):
                                    self.totalLeft += 1
                                    trackable_obj.counted = True
                                elif direction > 0 and centroid[0] > int(
                                        W * 0.75):
                                    self.totalRight += 1
                                    trackable_obj.counted = True

                        trackableObjects[objectID] = trackable_obj
                        text = "ID {}".format(objectID)

                        cv2.putText(self.frame, text,
                                    (centroid[0] - 10, centroid[1] - 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0),
                                    2)
                        cv2.circle(self.frame, (centroid[0], centroid[1]), 4,
                                   (0, 255, 0), -1)

                    self.signals.changeTextBox.emit(
                        f"{self.totalLeft}\n{self.totalRight}\n{self.status}")
                    # End of the loop
                    bytesPerLine = ch * W
                    convertToQtFormat = QImage(rgb.data, W, H, bytesPerLine,
                                               QImage.Format_RGB888)
                    p = convertToQtFormat.scaled(800, 600, Qt.KeepAspectRatio)
                    self.signals.changePixmap.emit(p)

                    totalFrames += 1
                    fps.update()
        #
        self.signals.changeTitleBox.emit("Durum: ")
        # Clear output
        self.signals.changeTextBox.emit("Rapor kaydedildi.")
        # Alter button to Start.
        self.signals.changeButton.emit("start_button")
        # Stop FPS count.
        fps.stop()
        # Get total elapsed time.
        self.total_elapsed_time = fps.elapsed()
        # Create report to database.
        self.create_report(self.totalLeft, self.totalRight, fps.elapsed())
        # Finally, set placeholder.
        self.signals.changePixmap.emit(QImage('./Resources/placeholder2.png'))
예제 #29
0
def evaluateallframes(base_dir, filename, outputfile="./output_video1.mp4"):
    Final_array = np.load(base_dir / filename,
                          allow_pickle=True,
                          mmap_mode='r')
    data_array = Final_array['arr_0']
    array_len = len(data_array)
    # 20, 200 frames in one file, downsample by 10
    print("Final_array lenth:", array_len)
    print("Final_array type:", type(data_array))  # numpy.ndarray

    frame_width = 1920
    frame_height = 1280
    out = cv2.VideoWriter(outputfile,
                          cv2.VideoWriter_fourcc('M', 'P', '4', 'V'), 2,
                          (frame_width, frame_height))
    fps = FPS().start()

    wod_latency_submission.initialize_model()

    required_field = wod_latency_submission.DATA_FIELDS
    print(required_field)

    for frameid in range(array_len):
        #frameid = 5
        print("frameid:", frameid)
        # {'key':key, 'context_name':context_name, 'framedict':framedict}
        convertedframesdict = data_array[frameid]
        frame_timestamp_micros = convertedframesdict['key']
        context_name = convertedframesdict['context_name']
        framedict = convertedframesdict['framedict']
        # 10017090168044687777_6380_000_6400_000
        #print('context_name:', context_name)
        #print('frame_timestamp_micros:', frame_timestamp_micros)  # 1550083467346370

        #result = wod_latency_submission.run_model(framedict[required_field[0]], framedict[required_field[1]])
        #result = wod_latency_submission.run_model(**framedict)
        Front_image = framedict[required_field[0]]
        start_time = time.time()
        result = wod_latency_submission.run_model(Front_image)
        end_time = time.time()
        elapsed_time = end_time - start_time
        print('Inference time: ' + str(elapsed_time) + 's')
        #print(result)

        #Save the original image
        #output_path = "./test.png"
        #visualization_util.save_image_array_as_png(Front_image, output_path)

        image_np_with_detections = Front_image.copy()
        visualization_util.visualize_boxes_and_labels_on_image_array(
            image_np_with_detections,
            result['boxes'],
            result['classes'],
            result['scores'],
            category_index,
            use_normalized_coordinates=False,
            max_boxes_to_draw=200,
            min_score_thresh=Threshold,
            agnostic_mode=False)
        #visualization_util.save_image_array_as_png(image_np_with_detections, outputfile)

        name = './Test_data/frame' + str(frameid) + '.jpg'
        #print ('Creating\...' + name)
        #cv2.imwrite(name, image_np_with_detections) #write to image folder
        fps.update()
        out.write(image_np_with_detections)

    # stop the timer and display FPS information
    fps.stop()
    print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
    out.release()
    if args["display"] > 0:
        cv2.imshow("Frame", frame)
        key = cv2.waitKey(1) & 0xFF
 
    # clear the stream in preparation for the next frame and update
    # the FPS counter
    rawCapture.truncate(0)
    fps.update()
 
    # check to see if the desired number of frames have been reached
    if i == args["num_frames"]:
        break
 
# stop the timer and display FPS information
fps.stop()
print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
 
# do a bit of cleanup
cv2.destroyAllWindows()
stream.close()
rawCapture.close()
camera.close()

# created a *threaded *video stream, allow the camera sensor to warmup,
# and start the FPS counter
print("[INFO] sampling THREADED frames from `picamera` module...")
vs = PiVideoStream().start()
time.sleep(2.0)
fps = FPS().start()
 
예제 #31
0
window_name = 'preview'

# Creation du thread de lecture + setup
vs=PiVideoStream()
vs.camera.video_stabilization = True
# Demarrage du flux video + warmup de la camera
vs.start()
time.sleep(2.0)

# Creation de la fenetre d'affichage
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)

fps = FPS().start()

while True :

    frame = vs.read()
    fps.update()

    cv2.imshow(window_name, frame) 
    key = cv2.waitKey(1) & 0xFF
    if key == ord("q") :
    	break

fps.stop()
print("Temps passé : {:.2f}".format(fps.elapsed()))
print("Approx. FPS : {:.2f}".format(fps.fps()))

cv2.destroyAllWindows()
vs.stop()
예제 #32
0
def find_vehicles(INPUT_FILE, OUTPUT_FILE, tiny):
    if tiny:
        CONFIG_FILE = 'yolov3-tiny.cfg'
        WEIGHTS_FILE = 'yolov2-tiny.weights'
    else:
        CONFIG_FILE = 'yolov3.cfg'
        WEIGHTS_FILE = 'yolov3.weights'

    H = None
    W = None

    fps = FPS().start()

    fourcc = cv2.VideoWriter_fourcc(*"MJPG")
    writer = cv2.VideoWriter(OUTPUT_FILE, fourcc, 30, (800, 600), True)

    LABELS = open(LABELS_FILE).read().strip().split("\n")

    np.random.seed(4)
    COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")

    net = cv2.dnn.readNetFromDarknet(CONFIG_FILE, WEIGHTS_FILE)

    vs = cv2.VideoCapture(INPUT_FILE)

    # determine only the *output* layer names that we need from YOLO
    ln = net.getLayerNames()
    ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
    cnt = 0
    while True:
        cnt += 1
        print("Frame number", cnt)
        try:
            (grabbed, image) = vs.read()
        except:
            break

        if image is None:
            break

        blob = cv2.dnn.blobFromImage(image,
                                     1 / 255.0, (416, 416),
                                     swapRB=True,
                                     crop=False)
        net.setInput(blob)
        if W is None or H is None:
            (H, W) = image.shape[:2]
        layerOutputs = net.forward(ln)

        # initialize our lists of detected bounding boxes, confidences, and
        # class IDs, respectively
        boxes = []
        confidences = []
        classIDs = []

        # loop over each of the layer outputs
        for output in layerOutputs:
            # loop over each of the detections
            for detection in output:
                # extract the class ID and confidence (i.e., probability) of
                # the current object detection
                scores = detection[5:]
                classID = np.argmax(scores)
                confidence = scores[classID]

                # filter out weak predictions by ensuring the detected
                # probability is greater than the minimum probability
                if confidence > CONFIDENCE_THRESHOLD:
                    # scale the bounding box coordinates back relative to the
                    # size of the image, keeping in mind that YOLO actually
                    # returns the center (x, y)-coordinates of the bounding
                    # box followed by the boxes' width and height
                    box = detection[0:4] * np.array([W, H, W, H])
                    (centerX, centerY, width, height) = box.astype("int")

                    # use the center (x, y)-coordinates to derive the top and
                    # and left corner of the bounding box
                    x = int(centerX - (width / 2))
                    y = int(centerY - (height / 2))

                    # update our list of bounding box coordinates, confidences,
                    # and class IDs
                    boxes.append([x, y, int(width), int(height)])
                    confidences.append(float(confidence))
                    classIDs.append(classID)

        # apply non-maxima suppression to suppress weak, overlapping bounding
        # boxes
        idxs = cv2.dnn.NMSBoxes(boxes, confidences, CONFIDENCE_THRESHOLD,
                                CONFIDENCE_THRESHOLD)

        # ensure at least one detection exists
        if len(idxs) > 0:
            # loop over the indexes we are keeping
            for i in idxs.flatten():
                # extract the bounding box coordinates
                (x, y) = (boxes[i][0], boxes[i][1])
                (w, h) = (boxes[i][2], boxes[i][3])

                color = [int(c) for c in COLORS[classIDs[i]]]

                cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
                text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
                cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,
                            0.5, color, 2)

        # show the output image
        cv2.imshow("output", cv2.resize(image, (800, 600)))
        writer.write(cv2.resize(image, (800, 600)))
        fps.update()
        key = cv2.waitKey(1) & 0xFF
        if key == ord("q"):
            break

    fps.stop()

    print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

    # do a bit of cleanup
    cv2.destroyAllWindows()

    # release the file pointers
    print("[INFO] cleaning up...")
    writer.release()
    vs.release()
예제 #33
-1
    def calculate_fps(self, frames_no=100):
        fps = FPS().start()

        # Don't wanna display window
        if self.debug:
            self.debug = not self.debug

        for i in range(0, frames_no):
            self.where_lane_be()
            fps.update()

        fps.stop()

        # Don't wanna display window
        if not self.debug:
            self.debug = not self.debug

        print('Time taken: {:.2f}'.format(fps.elapsed()))
        print('~ FPS : {:.2f}'.format(fps.fps()))