예제 #1
0
    def testPolicy(self,
                   symbol="JPM",
                   sd=dt.datetime(2008, 1, 1),
                   ed=dt.datetime(2009, 12, 31),
                   sv=100000):
        self.sv = sv
        #Read in the stock price
        if type(symbol) is str:
            symbols = list()
            symbols.append(symbol)
        else:
            symbols = symbol
        prices_df = get_data(symbols,
                             pd.date_range(sd, ed),
                             addSPY=True,
                             colname='Adj Close')
        #prices_df['cash'] = 1.0
        #prices_df = prices_df.drop(['SPY'], axis = 1)
        prices_df = prices_df.fillna(method='ffill')
        prices_df = prices_df.fillna(method='bfill')

        lookback_days = 30
        #date_range = prices_df.index[(lookback_days-1):]
        #Create an empty dataframe df_trades
        df_trades = pd.DataFrame(data=0,
                                 index=prices_df.index,
                                 columns=symbols)
        #print df_trades.head(20)
        sma, p_sma = p_sma_ratio(prices_df, lookback=lookback_days)
        K, D = stochastic_K_D(prices_df, lookback=lookback_days)
        BB, upperband, lowerband = bband(prices_df, lookback=lookback_days)

        for i in range(1, df_trades.shape[0] - (lookback_days - 1)):
            #The long entry
            if BB[symbol][i - 1] <= -1.01 and p_sma[symbol][i] > p_sma[symbol][
                    i - 1] and D[symbol][i - 1] < 20:
                if self.netHolding == -1000:
                    df_trades.iloc[i + lookback_days - 1] = 2000
                elif self.netHolding == 0:
                    df_trades.iloc[i + lookback_days - 1] = 1000
            #The short entry
            elif BB[symbol][i -
                            1] >= 1.01 and p_sma[symbol][i] < p_sma[symbol][
                                i - 1] and D[symbol][i - 1] > 80:
                #
                if self.netHolding == 1000:
                    df_trades.iloc[i + lookback_days - 1] = -2000
                elif self.netHolding == 0:
                    df_trades.iloc[i + lookback_days - 1] = -1000

            #The exit position
            elif (BB[symbol][i - 1] >= 0.95 and BB[symbol][i - 1] < 1.0) or (
                    BB[symbol][i - 1] > -1.0 and BB[symbol][i - 1] <= -0.95):
                df_trades.iloc[i + lookback_days - 1] = -self.netHolding

            self.netHolding += df_trades.iloc[i + lookback_days - 1].values

        return df_trades
예제 #2
0
    def __init__(self, sym='SPY', sd=dt.datetime(2008,1, 1), \
            ed=dt.datetime(2009,12,31),sv=100000,verbose=False):

        self.sym = sym
        self.verbose = verbose
        self.shares = 0
        self.position = 0
        self.sv = sv
        self.cash = sv
        self.pp = 0
        #period
        n = 28
        chart = False
        #take in, normalize data
        df = ut.get_data([sym], pd.date_range(sd - dt.timedelta(100), ed))[sym]
        normed = df / df.ix[0]

        #get features
        sma = ind.SMA(normed, n)
        smap = ind.standardize(normed / sma)
        bbp = ind.standardize(ind.bband(normed, n, chart)[0])
        stdev = ind.standardize(normed.rolling(window=n, min_periods=n).std())
        mom = ind.standardize(ind.momentum(normed, n, chart))
        momvol = ind.standardize(mom / stdev)

        #daily returns & combined features
        rets = pd.DataFrame(df)
        daily_rets = rets[sym].copy()
        daily_rets[1:] = (rets[sym].ix[1:] / rets[sym].ix[:-1].values) - 1
        daily_rets.ix[0] = 0
        #print df

        #df = pd.DataFrame(df).assign(normed = normed).assign(smap=smap).\
        #        assign(stdev=stdev).assign(bbp=bbp).assign(mom=mom)[sd:]
        df = pd.DataFrame(df).assign(normed = normed).assign(smap=smap).\
                assign(bbp=bbp).assign(mom=mom)[sd:]

        #print df
        daily_rets.ix[0] = 0
        df = df.assign(dr=daily_rets)

        #print df
        self.df = df
        self.market = df.iterrows()
        self.curr = self.market.next()
        self.action = self.Action()
        #self.features = ['smap', 'stdev', 'bbp', 'mom']
        self.features = ['smap', 'bbp', 'mom']
예제 #3
0
def testPolicy(symbol = "AAPL", sd=dt.datetime(2010,1,1), \
        ed = dt.datetime(2011,12,31), sv=100000):
    chart = False
    n = 14
    #symbol = [symbol]
    prices = get_data(symbol, pd.date_range(sd, ed))
    #print prices
    #ffill and drop SPY
    prices.fillna(method='ffill', inplace=True)
    prices.fillna(method='bfill', inplace=True)
    prices = prices[symbol]
    #Generate indicators
    sma = ind.SMA(prices, n)
    smap = ind.standardize(prices / sma)
    bbp = ind.standardize(ind.bband(prices, n, chart)[0])
    stdev = ind.standardize(prices.rolling(window=n, min_periods=n).std())
    mom = ind.standardize(ind.momentum(prices, n, chart))
    momvol = ind.standardize(mom / stdev)
    orders = prices.copy()
    orders.ix[:, :] = np.nan

    smap_cross = pd.DataFrame(0, index=smap.index, columns=smap.columns)
    smap_cross[smap >= 1] = 1
    smap_cross[1:] = smap_cross.diff()
    smap_cross.ix[0] = 0

    orders[(smap < 0.95) & (bbp < 0) & (stdev < 0.1) & (mom < 0)] = 1000
    orders[(smap > 1.05) & (bbp > 1) & (stdev > 0.3) & (mom > 0)] = -1000

    orders[(smap_cross != 0)] = 0
    orders.ffill(inplace=True)
    orders.fillna(0, inplace=True)
    orders[1:] = orders.diff()
    #orders.ix[0] = 1000
    #orders.ix[-1] = -1000
    #orders = orders.loc[(orders!=0).any(axis=1)]
    #orders.ix[0] = 0
    #orders.ix[-1] = orders.ix[-2]*-1
    #print orders
    return orders
예제 #4
0
파일: pred.py 프로젝트: alexanu/OANDAforex
# split to Bid/Ask
dfdict = func.splitbidask(dfprices)


#-----------------------------------------------------------------------------
# indicators testing
#-----------------------------------------------------------------------------

dfbid = dfdict['bid']
dfbid.head()
dfbid.dtypes

df1 = ind.trix( dfbid, [10,15])
df1 = ind.sma( dfbid, window = [3,5,9])
df1 = ind.sma( dfbid, 'volume', [5])
df1 = ind.bband( dfbid, 21)

df1.head(30)

df1 = ( dfbid.pipe( ind.bband, 21)
                .pipe( ind.sma, [3,5,9])
                .pipe( ind.trix, [7,11])






#-----------------------------------------------------------------------------

# optimization for indicators
예제 #5
0
    def addEvidence(self, symbol = "IBM", \
        sd=dt.datetime(2008,1,1), \
        ed=dt.datetime(2009,1,1), \
        sv = 100000):

        # add your code to do learning here
        self.sv = sv
        #Read in the stock price
        if type(symbol) is str:
            symbols = list()
            symbols.append(symbol)
        else:
            symbols = symbol
        prices_df = ut.get_data(symbols,
                                pd.date_range(sd, ed),
                                addSPY=True,
                                colname='Adj Close')
        #prices_df['cash'] = 1.0
        #prices_df = prices_df.drop(['SPY'], axis = 1)
        prices_df = prices_df.fillna(method='ffill')
        prices_df = prices_df.fillna(method='bfill')
        prices_df = prices_df.drop(['SPY'], axis=1)

        lookback_days = 15

        #Create an empty dataframe df_trades
        df_trades = pd.DataFrame(data=0,
                                 index=prices_df.index,
                                 columns=symbols)
        #print df_trades.head(20)
        sma, p_sma = p_sma_ratio(prices_df, lookback=lookback_days)
        K, D = stochastic_K_D(prices_df, lookback=lookback_days)
        BB, upperband, lowerband = bband(prices_df, lookback=lookback_days)

        #discretize the indicators
        p_sma_bins = pd.to_numeric(
            pd.cut(p_sma[symbol], 10, labels=range(0, 10)))
        K_bins = pd.to_numeric(pd.cut(K[symbol], 8, labels=range(0, 8)))
        BB_bins = pd.to_numeric(pd.cut(BB[symbol], 10, labels=range(0, 10)))

        states = 100 * K_bins + 10 * p_sma_bins + BB_bins
        #print type(states[0])
        #Instantiate a Q-learner

        converge = False
        count = 0
        #portvals_prev = [sv, sv, sv, sv, sv, sv, sv, sv, sv, sv]
        portvals_prev = [sv, sv, sv, sv, sv]
        #df_tmp = df_trades
        while (not converge and count < 500):
            action = self.learner.querysetstate(states[0])

            if (action == 0):  #long
                self.netHolding = 1000
            elif (action == 1):  #Nothing
                self.netHolding = 0
            else:  #short
                self.netHolding = -1000

            #print df_trades.loc['2008-01-02':'2008-01-31']
    #        print states.index
    #        print states.shape[0]
    #        print prices_df.loc[states.index[0]]

            for i in range(1, states.shape[0]):
                day = states.index[i]
                day_before = states.index[i - 1]
                if (action == 0):
                    impact_sign = 1
                elif (action == 1):
                    impact_sign = 0
                else:
                    impact_sign = -1

                #r = (prices_df[symbol].loc[day] - prices_df[symbol].loc[day_before] * \
                #   (1+impact_sign * self.impact)) * self.netHolding / self.sv
                r = self.netHolding * (prices_df[symbol].loc[day] /
                                       prices_df[symbol].loc[day_before] - 1 -
                                       self.impact * impact_sign)
                #                if self.netHolding != 0:
                #                    r = prices_df[symbol].loc[day]/prices_df[symbol].loc[day_before] - 1 - self.impact
                #                else:
                #                    r = 0
                #r = ((prices_df[symbol].loc[day] - prices_df[symbol].loc[day_before]) * self.netHolding  \
                #    - impact_sign * self.impact * df_trades.loc[day_before] * prices_df[symbol].loc[day_before])/self.sv
                action = self.learner.query(states[day], r)

                if (action == 0):  #long
                    if self.netHolding == -1000:
                        df_trades.loc[day] = 2000
                    elif self.netHolding == 0:
                        df_trades.loc[day] = 1000
                elif (action == 2):  #Short
                    if self.netHolding == 1000:
                        df_trades.loc[day] = -2000
                    elif self.netHolding == 0:
                        df_trades.loc[day] = -1000

                self.netHolding += df_trades.loc[day].values

    #            print prices_df.loc[day]
    #            print df_trades.loc[day]
    #            print self.netHolding
    #            print ""

            portvals, cr, stdev, mean = compute_portvals(df_trades,
                                                         start_val=sv,
                                                         commission=0,
                                                         impact=self.impact)
            #diff_portvals = abs(portvals[-1]- portvals_prev)
            diff_portvals = abs(portvals[-1] - np.mean(portvals_prev))

            #print portvals_prev

            if (count >= 10 and diff_portvals < 50.0):
                converge = True

            else:
                count += 1
                portvals_prev.pop(0)
                portvals_prev.append(portvals[-1])
        print count
예제 #6
0
    def testPolicy(self, symbol = "JPM", \
        sd=dt.datetime(2009,1,1), \
        ed=dt.datetime(2010,1,1), \
        sv = 10000):

        #Read in the stock price
        if type(symbol) is str:
            symbols = list()
            symbols.append(symbol)
        else:
            symbols = symbol
        prices_df = ut.get_data(symbols,
                                pd.date_range(sd, ed),
                                addSPY=True,
                                colname='Adj Close')
        #prices_df['cash'] = 1.0
        #prices_df = prices_df.drop(['SPY'], axis = 1)
        prices_df = prices_df.fillna(method='ffill')
        prices_df = prices_df.fillna(method='bfill')
        prices_df = prices_df.drop(['SPY'], axis=1)

        lookback_days = 15

        #Create an empty dataframe df_trades
        df_trades = pd.DataFrame(data=0,
                                 index=prices_df.index,
                                 columns=symbols)
        #print df_trades.head(20)
        sma, p_sma = p_sma_ratio(prices_df, lookback=lookback_days)
        K, D = stochastic_K_D(prices_df, lookback=lookback_days)
        BB, upperband, lowerband = bband(prices_df, lookback=lookback_days)

        #discretize the indicators
        p_sma_bins = pd.to_numeric(
            pd.cut(p_sma[symbol], 10, labels=range(0, 10)))
        K_bins = pd.to_numeric(pd.cut(K[symbol], 8, labels=range(0, 8)))
        BB_bins = pd.to_numeric(pd.cut(BB[symbol], 10, labels=range(0, 10)))

        states = 100 * K_bins + 10 * p_sma_bins + BB_bins
        netHolding = 0

        for i in range(1, states.shape[0]):
            day = states.index[i]
            #day_before = states.index[i-1]

            #r = (prices_df[symbol].loc[day] - prices_df[symbol].loc[day_before])* netHolding / sv
            action = self.learner.querysetstate(states[day])

            if (action == 0):  #long
                if netHolding == -1000:
                    df_trades.loc[day] = 2000
                elif netHolding == 0:
                    df_trades.loc[day] = 1000
            elif (action == 2):  #Short
                if netHolding == 1000:
                    df_trades.loc[day] = -2000
                elif netHolding == 0:
                    df_trades.loc[day] = -1000

            netHolding += df_trades.loc[day].values

        #portvals, cr, stdev, mean = compute_portvals(df_trades, start_val = sv, commission=0, impact=self.impact)
        #    print states[day]
        # here we build a fake set of trades
        # your code should return the same sort of data


#        dates = pd.date_range(sd, ed)
#        prices_all = ut.get_data([symbol], dates)  # automatically adds SPY
#        trades = prices_all[[symbol,]]  # only portfolio symbols
#        trades_SPY = prices_all['SPY']  # only SPY, for comparison later
#        trades.values[:,:] = 0 # set them all to nothing
#        trades.values[0,:] = 1000 # add a BUY at the start
#        trades.values[40,:] = -1000 # add a SELL
#        trades.values[41,:] = 1000 # add a BUY
#        trades.values[60,:] = -2000 # go short from long
#        trades.values[61,:] = 2000 # go long from short
#        trades.values[-1,:] = -1000 #exit on the last day
#        if self.verbose: print type(trades) # it better be a DataFrame!
#        if self.verbose: print trades
#        if self.verbose: print prices_all
        return df_trades
예제 #7
0
    def __init__(self, sym='SPY', sd=dt.datetime(2008,1, 1), \
            ed=dt.datetime(2009,12,31),sv=100000,verbose=False, experiment=False, impact=0.0):

        self.sym = sym
        self.verbose = verbose
        self.shares = 0
        self.position = 2
        self.sv = sv
        self.cash = sv
        self.pp = 0
        self.impact = impact
        self.experiment = experiment
        #n = 3  #period
        chart = False
        #take in, normalize data
        df = ut.get_data([sym], pd.date_range(sd - dt.timedelta(100), ed))[sym]
        #print df
        #print sd, ed
        normed = df / df.ix[0]
        #print normed
        #daily returns & combined features
        rets = pd.DataFrame(df)
        daily_rets = rets[sym].copy()
        daily_rets[1:] = (rets[sym].ix[1:] / rets[sym].ix[:-1].values) - 1
        daily_rets.ix[0] = 0

        #Simple moving average
        sma5 = normed.rolling(5).mean()
        sma15 = normed.rolling(15).mean()
        sma20 = normed.rolling(20).mean()
        sma25 = normed.rolling(25).mean()
        sma30 = normed.rolling(30).mean()
        sma40 = normed.rolling(40).mean()
        #print sma5
        # Volatility
        vol5 = normed.rolling(5).std()
        vol10 = normed.rolling(10).std()
        vol20 = normed.rolling(20).std()
        vol30 = normed.rolling(30).std()

        # Bollinger bands
        sma_bb = normed.rolling(5).mean()
        sma_bb_std = normed.rolling(5).std()
        bb = (normed -
              (sma_bb - 2 * sma_bb_std)) / ((sma_bb + 2 * sma_bb_std) -
                                            (sma_bb - 2 * sma_bb_std))

        # Moving average convergence/divergence
        #ema12 = pd.ewma(np.asarray(normed), span=12)
        #ema26 = pd.ewma(np.asarray(normed), span=26)
        #macd = ema12 - ema26

        # Momentum
        momentum2 = normed / normed.shift(2) - 1
        momentum5 = normed / normed.shift(5) - 1
        momentum10 = normed / normed.shift(10) - 1

        # Combine into new dataframe
        df = pd.DataFrame(df).assign(sma5=normed / sma5 - 1).assign(\
            bb=bb).assign(momentum2=momentum2).assign(normed=normed).\
            assign(vol10=vol10).assign(vol20=vol20).assign(vol30=vol30).assign(vol10=vol10)\
            .assign(vol5=vol5).assign(\
            momentum5=momentum5).assign(momentum10=momentum10)[sd:]

        df = df.assign(dr=daily_rets)
        #print df
        # Determine optimal features for states
        corr_df = df.corr().abs()
        corr = corr_df['dr'][:]
        corr.ix[0] = 0
        corr['normed'] = 0
        icorr = np.asarray(corr)
        scorr = icorr.argsort(
        )[-4:][::-1]  # select top 3 features and daily returns
        scorr = scorr[1:]  # remove daily returns from possible features
        optimal_ftrs = []
        for i in scorr:
            optimal_ftrs.append(corr_df.columns[i])

        if experiment:
            #print "Experiment 1 ACTIVATED"
            n = 14
            sma = ind.SMA(normed, n)
            smap = ind.standardize(normed / sma)
            bbp = ind.standardize(ind.bband(normed, n, chart)[0])
            stdev = ind.standardize(
                normed.rolling(window=n, min_periods=n).std())
            mom = ind.standardize(ind.momentum(normed, n, chart))
            momvol = ind.standardize(mom / stdev)
            df = pd.DataFrame(df).assign(normed=normed).assign(
                smap=smap).assign(stdev=stdev).assign(bbp=bbp).assign(
                    mom=mom)[sd:]
            optimal_ftrs = ['smap', 'stdev', 'bbp', 'mom']

        #df = pd.DataFrame(df).assign(normed = normed).assign(smap=smap).assign(bbp=bbp).assign(mom=mom)[sd:]
        #df = pd.DataFrame(df).assign(normed = normed)[sd:]

        self.df = df
        self.market = df.iterrows()
        self.curr = self.market.next()
        self.action = self.Action()
        self.features = optimal_ftrs