from GP.covariance_functions import SquaredExponential, Matern, GammaExponential data_params = np.array([1.0, 0.5, 0.1]) data_covariance_obj = SquaredExponential(data_params) model_params = np.array([0.7, 0.3, 0.2]) model_covariance_obj = SquaredExponential(model_params) gp = GPR(data_covariance_obj) num = 500 test_num = 100 input_nums = [5, 10, 15, 20, 30, 50] dim = 1 seed = 10 file_name = 'd1_n500' title = 'Generated dataset, n = ' + str(num) + ', d = ' + str(dim) # Generating data points np.random.seed(seed) x_tr = np.random.rand(dim, num) if dim == 1: x_test = np.linspace(0, 1, test_num) x_test = x_test.reshape(1, test_num) else: x_test = np.random.rand(dim, test_num) y_tr, y_test = gp.generate_data(x_tr, x_test, seed=seed) run_methods(x_tr, y_tr, x_test, y_test, model_params, input_nums, file_name, title, True)
data_params = np.array([1.0, 0.5, 0.1]) data_covariance_obj = SquaredExponential(data_params) model_params = np.array([0.7, 0.3, 0.2]) model_covariance_obj = SquaredExponential(model_params) gp = GPR(data_covariance_obj) num = 500 test_num = 100 input_nums = [5, 10, 30, 50, 60] # input_nums = [40, 50]#, 60] dim = 4 seed = 10 file_name = 'd5_n500' title = 'Generated dataset, n = ' + str(num) + ', d = ' + str(dim) # Generating data points np.random.seed(seed) x_tr = np.random.rand(dim, num) if dim == 1: x_test = np.linspace(0, 1, test_num) x_test = x_test.reshape(1, test_num) else: x_test = np.random.rand(dim, test_num) y_tr, y_test = gp.generate_data(x_tr, x_test, seed=seed) run_methods(x_tr, y_tr, x_test, y_test, model_params, input_nums, file_name, title, vi=True, full=True, show=True)
from GP.covariance_functions import SquaredExponential, Matern, GammaExponential data_params = np.array([1.0, 0.5, 0.1]) data_covariance_obj = SquaredExponential(data_params) model_params = np.array([0.7, 0.3, 0.2]) model_covariance_obj = SquaredExponential(model_params) gp = GPR(data_covariance_obj) num = 4000 test_num = 100 input_nums = [10, 20, 50, 100, 200, 300, 400, 500, 600] dim = 10 seed = 10 file_name = 'd10_n4000' title = 'Generated dataset, n = ' + str(num) + ', d = ' + str(dim) # Generating data points np.random.seed(seed) x_tr = np.random.rand(dim, num) if dim == 1: x_test = np.linspace(0, 1, test_num) x_test = x_test.reshape(1, test_num) else: x_test = np.random.rand(dim, test_num) y_tr, y_test = gp.generate_data(x_tr, x_test, seed=seed) run_methods(x_tr, y_tr, x_test, y_test, model_params, input_nums, file_name, title, True, full=False, vi=False)
test_num = 100 input_nums = [5, 10, 30, 50, 60] # input_nums = [40, 50]#, 60] dim = 4 seed = 10 file_name = 'd5_n500' title = 'Generated dataset, n = ' + str(num) + ', d = ' + str(dim) # Generating data points np.random.seed(seed) x_tr = np.random.rand(dim, num) if dim == 1: x_test = np.linspace(0, 1, test_num) x_test = x_test.reshape(1, test_num) else: x_test = np.random.rand(dim, test_num) y_tr, y_test = gp.generate_data(x_tr, x_test, seed=seed) run_methods(x_tr, y_tr, x_test, y_test, model_params, input_nums, file_name, title, vi=True, full=True, show=True)
num = 4000 test_num = 100 input_nums = [10, 20, 50, 100, 200, 300, 400, 500, 600] dim = 10 seed = 10 file_name = 'd10_n4000' title = 'Generated dataset, n = ' + str(num) + ', d = ' + str(dim) # Generating data points np.random.seed(seed) x_tr = np.random.rand(dim, num) if dim == 1: x_test = np.linspace(0, 1, test_num) x_test = x_test.reshape(1, test_num) else: x_test = np.random.rand(dim, test_num) y_tr, y_test = gp.generate_data(x_tr, x_test, seed=seed) run_methods(x_tr, y_tr, x_test, y_test, model_params, input_nums, file_name, title, True, full=False, vi=False)