예제 #1
0
def case2():
    modetr = get_modetr(0)
    event = get_event(0)
    labeltest = get_labeltest(0)
    y0 = [[-1, 1], [1, 4], [2, -3]]
    y1 = [[3, -1], [-1, 3]]
    T = 5
    stepsize = 0.002
    maxorder = 2
    boundary_order = 1
    num_mode = 3
    ep = 0.0005
    mergeep = 0.01
    method = 'piecelinear'
    t_list, y_list = simulation_ode_3(modetr, event, labeltest, y0, T,
                                      stepsize)
    # A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    # np.savetxt("data/A5.txt",A,fmt='%8f')
    # np.savetxt("data/b5.txt",b,fmt='%8f')
    P, G, (coeff1, coeff2, [first, second, third
                            ]) = infer_model(t_list,
                                             y_list,
                                             stepsize=stepsize,
                                             maxorder=maxorder,
                                             boundary_order=boundary_order,
                                             num_mode=num_mode,
                                             modelist=modetr,
                                             event=event,
                                             ep=ep,
                                             mergeep=mergeep,
                                             method=method,
                                             verbose=False,
                                             labeltest=labeltest)
    boundary = (coeff1, coeff2, [first, second, third])
    t_test_list, y_test_list = simulation_ode_3(modetr, event, labeltest, y1,
                                                T, stepsize)
    # YT, FT = diff(t_list+t_test_list, y_list+y_test_list, dynamics.modetrt)
    # np.savetxt("data/YT5.txt",YT,fmt='%8f')
    # np.savetxt("data/FT5.txt",FT,fmt='%8f')
    d_avg = test_model(P,
                       G,
                       boundary,
                       num_mode,
                       y_list,
                       modetr,
                       event,
                       maxorder,
                       boundary_order,
                       labeltest=labeltest)
    # print(G)
    print(d_avg)
예제 #2
0
def case1():
    np.random.seed(0)
    modetr = get_modetr(0)
    event = get_event(0)
    labeltest = get_labeltest(0)
    y0 = [[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]]
    # y1 = [[3,-1], [-1,3]]
    T = 5
    stepsize = 0.005
    maxorder = 2
    boundary_order = 1
    num_mode = 5
    ep = 0.005
    mergeep = 0.01
    t_list, y_list = simulation_ode_3(modetr, event, labeltest, y0, T,
                                      stepsize)
    # A, b1, b2, Y, ytuple = diff_method_backandfor(t_list, y_list, maxorder, stepsize)
    # res, drop, clfs = segment_and_fit(A, b1, b2, ytuple,ep=0.005)
    # np.savetxt("data/YY.txt",Y,fmt='%8f')
    # print(len(res))
    # print(res)
    # P, G = merge_cluster_tol2(res, A, b1, num_mode, ep)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    np.savetxt("data/YY.txt", Y, fmt='%8f')
    P, G, D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder, ep)
    # print(P)
    print(len(P))
    if len(P) > num_mode:
        P, G = merge_cluster_tol2(P, A, b, num_mode, ep)
    P, _ = dropclass0(P, G, D, A, b, Y, ep, stepsize)
    print(P)
    print(len(P))
    L_y = len(y_list[0][0])
    boundary = svm_classify(P, Y, L_y, boundary_order, num_mode)
    print(boundary)
    d = test_model(P,
                   G,
                   boundary,
                   num_mode,
                   y_list,
                   modetr,
                   event,
                   maxorder,
                   boundary_order,
                   labeltest=labeltest)
    print(d)
예제 #3
0
def case1():
    modetr = get_modetr(0)
    event = get_event(0)
    labeltest = get_labeltest(0)
    y0 = [[-1, 1], [1, 4], [2, -3], [1, 1], [3, 1]]
    y1 = [[3, -1], [-1, 3]]
    T = 5
    stepsize = 0.01
    maxorder = 2
    boundary_order = 1
    num_mode = 3
    ep = 0.005
    mergeep = 0.01
    method = 'piecelinear'
    t_list, y_list = simulation_ode_3(modetr, event, labeltest, y0, T,
                                      stepsize)
    A, b1, b2, Y = diff_method_backandfor(t_list, y_list, maxorder, stepsize)
    P, G, (coeff1, coeff2, [first, second, third
                            ]) = infer_model(t_list,
                                             y_list,
                                             stepsize=stepsize,
                                             maxorder=maxorder,
                                             boundary_order=boundary_order,
                                             num_mode=num_mode,
                                             modelist=modetr,
                                             event=event,
                                             ep=ep,
                                             mergeep=mergeep,
                                             method=method,
                                             verbose=False,
                                             labeltest=labeltest)
    for i in range(0, len(P)):
        y0_list = []
        y1_list = []
        for j in range(0, len(P[i])):
            y0_list.append(Y[P[i][j], 0])
            y1_list.append(Y[P[i][j], 1])

        plt.scatter(y0_list, y1_list, s=1)
    plt.show()
예제 #4
0
def case10():
    y0 = [[-1,1],[1,4],[2,-3]]
    t_tuple = [(0,5),(0,5),(0,5)]
    stepsize = 0.01
    maxorder = 2
    # start = time.time()
    def labeltest(y):
        if eventtr_1(0,y)<0 and eventtr_2(0,y)>0:
            return 0
        elif eventtr_1(0,y)>=0 and eventtr_2(0,y)>0:
            return 1
        else:
            return 2

    t_list, y_list = simulation_ode_3([modetr_1, modetr_2, modetr_3], [eventtr_1,eventtr_2,eventtr_2], labeltest, y0, t_tuple, stepsize)
    draw2D(y_list)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    P,G,D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder, 0.01)
    print(P)
    print(G)
    print(D)
    # for p in P:
    #     print(len(p))
    # tpar_list,ypar_list = parti(t_list,y_list,0.2,1/3)
    
    # for temp in tpar_list:
    #     print(temp[-1])
    # labels = infer_dynamic_modes_ex_dbs(tpar_list, ypar_list, stepsize, maxorder, 0.02)
    # print(labels)
    # draw2D(ypar_list)
    for i in range(0,len(P)):
        y0_list = []
        y1_list = []
        for j in range(0,len(P[i])):
            y0_list.append(Y[P[i][j],0])
            y1_list.append(Y[P[i][j],1])
    
        plt.scatter(y0_list,y1_list,s=1)
    plt.show()
    
    P,G = reclass(A,b,P,0.01)
    for p in P:
        print(len(p))
    print(G)

    for i in range(0,len(P)):
        y0_list = []
        y1_list = []
        for j in range(0,len(P[i])):
            y0_list.append(Y[P[i][j],0])
            y1_list.append(Y[P[i][j],1])
    
        plt.scatter(y0_list,y1_list,s=1)
    plt.show()
    P,D = dropclass(P,G,D,A,b,Y,0.01,0.01)
    print(D)
    for i in range(0,len(P)):
        y0_list = []
        y1_list = []
        for j in range(0,len(P[i])):
            y0_list.append(Y[P[i][j],0])
            y1_list.append(Y[P[i][j],1])
    
        plt.scatter(y0_list,y1_list,s=1)
    # plt.show()
    
    y=[]
    x=[]

    for j in range(0,len(P[2])):
        y.append(1)
        x.append({1:Y[P[2][j],0], 2:Y[P[2][j],1]})
    
    for j in range(0,len(P[1])):
        y.append(-1)
        x.append({1:Y[P[1][j],0], 2:Y[P[1][j],1]})
    
    for j in range(0,len(P[0])):
        y.append(-1)
        x.append({1:Y[P[0][j],0], 2:Y[P[0][j],1]})

    prob  = svm_problem(y, x)
    param = svm_parameter('-t 1 -d 1 -c 100 -r 1 -b 0')
    m = svm_train(prob, param)
    svm_save_model('model_file', m)
    print("pred")
    p_label, p_acc, p_val = svm_predict(y, x, m)
    # print(p_label)
    nsv = m.get_nr_sv()
    svc = m.get_sv_coef()
    sv = m.get_SV()
    # print(nsv)
    # print(svc)
    # print(sv)
    
    # def clafun(x):
    #     g = -m.rho[0]
    #     for i in range(0,nsv):
    #         g = g + svc[i][0] * ((0.5 * (x[0]*sv[i][1] + x[1]*sv[i][2]))**3)
    #     return g

    g = -m.rho[0]
    a1 = 0
    a2 = 0
    for i in range(0,nsv):
        a1 = a1 + svc[i][0] * 0.5 * sv[i][1]
        a2 = a2 + svc[i][0] * 0.5 * sv[i][2]
        g = g + svc[i][0]*1
    print(a1)
    print(a2)
    print(g)

    def f(x,y):
        g = -m.rho[0]
        for i in range(0,nsv):
            g = g + svc[i][0] * (0.5*(x*sv[i][1]+y*sv[i][2])+1)
        return g

    x=[]
    y=[]

    for j in range(0,len(P[1])):
        y.append(1)
        x.append({1:Y[P[1][j],0], 2:Y[P[1][j],1]})
    
    for j in range(0,len(P[0])):
        y.append(-1)
        x.append({1:Y[P[0][j],0], 2:Y[P[0][j],1]})

    prob  = svm_problem(y, x)
    param = svm_parameter('-t 1 -d 1 -c 100 -r 1 -b 0')
    m = svm_train(prob, param)
    svm_save_model('model_file', m)
    print("pred")
    p_label, p_acc, p_val = svm_predict(y, x, m)
    # print(p_label)
    nsv = m.get_nr_sv()
    svc = m.get_sv_coef()
    sv = m.get_SV()
    # print(nsv)
    # print(svc)
    # print(sv)
    
    # def clafun(x):
    #     g = -m.rho[0]
    #     for i in range(0,nsv):
    #         g = g + svc[i][0] * ((0.5 * (x[0]*sv[i][1] + x[1]*sv[i][2]))**3)
    #     return g

    g1 = -m.rho[0]
    b1 = 0
    b2 = 0
    for i in range(0,nsv):
        b1 = b1 + svc[i][0] * 0.5 * sv[i][1]
        b2 = b2 + svc[i][0] * 0.5 * sv[i][2]
        g1 = g1 + svc[i][0]*1
    # print(a1)
    # print(a2)
    # print(g)

    def h(x,y):
        g = -m.rho[0]
        for i in range(0,nsv):
            g = g + svc[i][0] * (0.5*(x*sv[i][1]+y*sv[i][2])+1)
        return g
    x = np.linspace(-10,10,100)
    y = np.linspace(-10,10,100)
    
    X,Y = np.meshgrid(x,y)#将x,y指传入网格中
    # plt.contourf(X,Y,f(X,Y),8,alpha=0.75,cmap=plt.cm.hot)#8指图中的8+1根线,绘制等温线,其中cmap指颜色
    
    C = plt.contour(X,Y,f(X,Y),[0])#colors指等高线颜色
    plt.clabel(C,inline=True,fontsize=10)#inline=True指字体在等高线中
    D = plt.contour(X,Y,h(X,Y),[0])#colors指等高线颜色
    plt.clabel(D,inline=True,fontsize=10)#inline=True指字体在等高线中
    
    plt.xticks(())
    plt.yticks(())
    plt.show()
예제 #5
0
def case(y0, t_tuple, stepsize, maxorder, modelist, eventlist, labeltest, ep,
         method):
    t_list, y_list = simulation_ode_3(modelist, eventlist, labeltest, y0,
                                      t_tuple, stepsize)

    if method == "new":
        A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
        P, G, D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder,
                                          ep)
        P, G = reclass(A, b, P, ep)
        P, D = dropclass(P, G, D, A, b, Y, ep, stepsize)
        print(G)

        for i in range(0, len(P)):
            y0_list = []
            y1_list = []
            for j in range(0, len(P[i])):
                y0_list.append(Y[P[i][j], 0])
                y1_list.append(Y[P[i][j], 1])

            plt.scatter(y0_list, y1_list, s=1)
        plt.show()

        y = []
        x = []

        for j in range(0, len(P[2])):
            y.append(1)
            x.append({1: Y[P[2][j], 0], 2: Y[P[2][j], 1]})

        for j in range(0, len(P[1])):
            y.append(-1)
            x.append({1: Y[P[1][j], 0], 2: Y[P[1][j], 1]})

        for j in range(0, len(P[0])):
            y.append(-1)
            x.append({1: Y[P[0][j], 0], 2: Y[P[0][j], 1]})

        prob = svm_problem(y, x)
        param = svm_parameter('-t 1 -d 1 -c 100 -r 1 -b 0 -q')
        m = svm_train(prob, param)
        svm_save_model('model_file1', m)
        nsv = m.get_nr_sv()
        svc = m.get_sv_coef()
        sv = m.get_SV()
        g = -m.rho[0]
        a1 = 0
        a2 = 0
        for i in range(0, nsv):
            a1 = a1 + svc[i][0] * 0.5 * sv[i][1]
            a2 = a2 + svc[i][0] * 0.5 * sv[i][2]
            g = g + svc[i][0] * 1
        print(a1 / a2, a2 / a2, g / a2)

        def f(x):
            g = -m.rho[0]
            for i in range(0, nsv):
                g = g + svc[i][0] * (0.5 *
                                     (x[0] * sv[i][1] + x[1] * sv[i][2]) + 1)
            return g > 0

        x = []
        y = []

        for j in range(0, len(P[1])):
            y.append(1)
            x.append({1: Y[P[1][j], 0], 2: Y[P[1][j], 1]})

        for j in range(0, len(P[0])):
            y.append(-1)
            x.append({1: Y[P[0][j], 0], 2: Y[P[0][j], 1]})

        prob = svm_problem(y, x)
        param = svm_parameter('-t 1 -d 1 -c 100 -r 1 -b 0 -q')
        n = svm_train(prob, param)
        svm_save_model('model_file2', n)
        # p_label, p_acc, p_val = svm_predict(y, x, n)
        nsv1 = n.get_nr_sv()
        svc1 = n.get_sv_coef()
        sv1 = n.get_SV()
        g1 = -n.rho[0]
        b1 = 0
        b2 = 0
        for i in range(0, nsv1):
            b1 = b1 + svc1[i][0] * 0.5 * sv1[i][1]
            b2 = b2 + svc1[i][0] * 0.5 * sv1[i][2]
            g1 = g1 + svc1[i][0] * 1
        print(b1 / b1, b2 / b1, g1 / b1)

        def h(x):
            g = -n.rho[0]
            for i in range(0, nsv1):
                g = g + svc1[i][0] * (0.5 *
                                      (x[0] * sv1[i][1] + x[1] * sv1[i][2]) +
                                      1)
            return g > 0

        @eventAttr()
        def eventtest1(t, y):
            y0, y1 = y
            return a1 * y0 + a2 * y1 + g

        @eventAttr()
        def eventtest2(t, y):
            y0, y1 = y
            return b1 * y0 + b2 * y1 + g1

        def labeltesttest(y):
            if eventtest1(0, y) > 0:
                return 2
            elif eventtest2(0, y) > 0:
                return 1
            else:
                return 0

        ttest_list, ytest_list = simulation_ode_3([
            ode_test(G[0], maxorder),
            ode_test(G[1], maxorder),
            ode_test(G[2], maxorder)
        ], [eventtest1, eventtest2], labeltesttest, y0, t_tuple, stepsize)

        for temp_y in y_list:
            y0_list = temp_y.T[0]
            y1_list = temp_y.T[1]
            plt.plot(y0_list, y1_list, c='b')
        for temp_y in ytest_list:
            y0_list = temp_y.T[0]
            y1_list = temp_y.T[1]
            plt.plot(y0_list, y1_list, c='r')
        plt.show()

    sum = 0
    num = 0

    def get_poly_pt(x):
        gene = generate_complete_polynomial(len(x), maxorder)
        val = []
        for i in range(gene.shape[0]):
            val.append(1.0)
            for j in range(gene.shape[1]):
                val[i] = val[i] * (x[j]**gene[i, j])
        poly_pt = np.mat(val)
        return poly_pt

    for ypoints in y_list:
        num = num + ypoints.shape[0]
        for i in range(ypoints.shape[0]):
            exact = modelist[labeltest(ypoints[i])](0, ypoints[i])
            if f(ypoints[i]) == 1:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[2].T)
            elif h(ypoints[i]) == 1:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[1].T)
            else:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[0].T)

            exact = np.mat(exact)
            diff = exact - predict
            c = 0
            a = 0
            b = 0
            for j in range(diff.shape[1]):
                c = c + diff[0, j]**2
                a = a + exact[0, j]**2
                b = b + predict[0, j]**2
            f1 = np.sqrt(c)
            f2 = np.sqrt(a) + np.sqrt(b)
            sum = sum + f1 / f2

    return sum / num
예제 #6
0
def compare1(id, eid, case_id, verbose=False):
    np.random.seed(0)

    if eid == 'A':
        case_info = experiment1.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment1.get_mode2(params)
        event = experiment1.get_event1(params)
        maxorder = 1
        boundary_order = 1
        num_mode = 2
        ep = 0.01
        mergeep = 0.01
        dy = dynamics.mode2t

    elif eid == 'B':
        case_info = experiment2.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment2.get_fvdp3(params)
        event = experiment2.get_event1(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.fvdp3_3

    elif eid == 'C':
        case_info = experiment3.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment3.get_mode(params)
        event = experiment3.get_event(params)
        maxorder = 3
        boundary_order = 2
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.modeex3

    elif eid == 'D':
        case_info = experiment4.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment4.get_mmode(params)
        event = experiment4.get_event(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.modeex4

    elif eid == 'E':
        case_info = experiment5.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment5.get_modetr(params)
        event = experiment5.get_event(params)
        labeltest = experiment5.get_labeltest(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 3
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.modetrt

    # Obtain simulated trajectory
    start = time.time()
    if num_mode == 2:
        t_list, y_list = simulation_ode_2(modelist, event, y0, T, stepsize)
        test_t_list, test_y_list = simulation_ode_2(modelist, event, y0_test,
                                                    T, stepsize)
    elif num_mode == 3:
        t_list, y_list = simulation_ode_3(modelist, event, labeltest, y0, T,
                                          stepsize)
        test_t_list, test_y_list = simulation_ode_3(modelist, event, labeltest,
                                                    y0_test, T, stepsize)
    else:
        raise NotImplementedError
    end = time.time()
    # A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    # np.savetxt("data/CA"+str(id)+".txt",A,fmt='%8f')
    # np.savetxt("data/Cb"+str(id)+".txt",b,fmt='%8f')
    # YT, FT = diff(t_list+test_t_list, y_list+test_y_list, dy)
    # np.savetxt("data/CYT"+str(id)+".txt",YT,fmt='%8f')
    # np.savetxt("data/CFT"+str(id)+".txt",FT,fmt='%8f')
    for i in range(0, len(y_list)):
        np.savetxt("data1/YLIST" + str(id) + "_" + str(i) + ".txt",
                   y_list[i],
                   fmt='%8f')
    for i in range(0, len(test_y_list)):
        np.savetxt("data1/YTLIST" + str(id) + "_" + str(i) + ".txt",
                   test_y_list[i],
                   fmt='%8f')
예제 #7
0
def compare_opt(id, eid, case_id, verbose=False):
    np.random.seed(0)

    if eid == 'A':
        case_info = experiment1.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment1.get_mode2(params)
        event = experiment1.get_event1(params)
        maxorder = 1
        boundary_order = 1
        num_mode = 2
        ep = 0.01
        mergeep = 0.01
        dy = dynamics.mode2t

    elif eid == 'B':
        case_info = experiment2.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment2.get_fvdp3(params)
        event = experiment2.get_event1(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.fvdp3_3

    elif eid == 'C':
        case_info = experiment3.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment3.get_mode(params)
        event = experiment3.get_event(params)
        maxorder = 3
        boundary_order = 2
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.modeex3

    elif eid == 'D':
        case_info = experiment4.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment4.get_mmode(params)
        event = experiment4.get_event(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.modeex4

    elif eid == 'E':
        case_info = experiment5.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment5.get_modetr(params)
        event = experiment5.get_event(params)
        labeltest = experiment5.get_labeltest(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 3
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.modetrt

    # Obtain simulated trajectory
    print(id, eid)
    start = time.time()
    if num_mode == 2:
        t_list, y_list = simulation_ode_2(modelist, event, y0, T, stepsize)
        test_t_list, test_y_list = simulation_ode_2(modelist, event, y0_test,
                                                    T, stepsize)
    elif num_mode == 3:
        t_list, y_list = simulation_ode_3(modelist, event, labeltest, y0, T,
                                          stepsize)
        test_t_list, test_y_list = simulation_ode_3(modelist, event, labeltest,
                                                    y0_test, T, stepsize)
    else:
        raise NotImplementedError
    end = time.time()
    # start = time.time()
    # A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    A, b1, b2, Y, ytuple = diff_method_backandfor(t_list, y_list, maxorder,
                                                  stepsize)
    optA, optb1, optb2, drop = seg_droprow(A, b1, b2, ep)
    x0 = np.zeros(num_mode * optA.shape[1] * optb1.shape[1])
    for ini in range(0, 5):
        print('initial', ini)
        for i in range(len(x0)):
            x0[i] = np.random.uniform(-5, 5)
        for optmethod in ['nelder-mead', 'COBYLA', 'Powell', 'CG']:
            try:
                infer_optimizationmtest(x0, optA, optb1, num_mode)
            except:
                print(optmethod, ' timeout')
예제 #8
0
def run_test(id, eid, case_id, methods, verbose=False):
    np.random.seed(0)

    if eid == 'A':
        case_info = experiment1.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment1.get_mode2(params)
        event = experiment1.get_event1(params)
        maxorder = 1
        boundary_order = 1
        num_mode = 2
        ep = 0.01
        mergeep = 0.01

    elif eid == 'B':
        case_info = experiment2.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment2.get_fvdp3(params)
        event = experiment2.get_event1(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']

    elif eid == 'C':
        case_info = experiment3.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment3.get_mode(params)
        event = experiment3.get_event(params)
        maxorder = 3
        boundary_order = 2
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']

    elif eid == 'D':
        case_info = experiment4.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment4.get_mmode(params)
        event = experiment4.get_event(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']

    elif eid == 'E':
        case_info = experiment5.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment5.get_modetr(params)
        event = experiment5.get_event(params)
        labeltest = experiment5.get_labeltest(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 3
        ep = case_info['ep']
        mergeep = case_info['mergeep']

    # Obtain simulated trajectory
    start = time.time()
    if num_mode == 2:
        t_list, y_list = simulation_ode_2(modelist, event, y0, T, stepsize)
        test_t_list, test_y_list = simulation_ode_2(modelist, event, y0_test,
                                                    T, stepsize)
    elif num_mode == 3:
        t_list, y_list = simulation_ode_3(modelist, event, labeltest, y0, T,
                                          stepsize)
        test_t_list, test_y_list = simulation_ode_3(modelist, event, labeltest,
                                                    y0_test, T, stepsize)
    else:
        raise NotImplementedError
    end = time.time()

    # print('eid:', eid, 'N_init:', len(y0), 't_step:', stepsize, 'ep:', ep, 'sim_time: %.3f' % (end - start))

    d_avg = dict()
    infer_time = dict()
    for method in methods:
        start = time.time()
        if num_mode == 2:
            P, G, boundary = infer_model(t_list,
                                         y_list,
                                         stepsize=stepsize,
                                         maxorder=maxorder,
                                         boundary_order=boundary_order,
                                         num_mode=num_mode,
                                         modelist=modelist,
                                         event=event,
                                         ep=ep,
                                         mergeep=mergeep,
                                         method=method,
                                         verbose=verbose)
            end = time.time()
            d_avg[method] = test_model(P, G, boundary, num_mode,
                                       y_list + test_y_list, modelist, event,
                                       maxorder, boundary_order)
            infer_time[method] = end - start
        elif num_mode == 3:
            P, G, boundary = infer_model(t_list,
                                         y_list,
                                         stepsize=stepsize,
                                         maxorder=maxorder,
                                         boundary_order=boundary_order,
                                         num_mode=num_mode,
                                         modelist=modelist,
                                         event=event,
                                         ep=ep,
                                         mergeep=mergeep,
                                         method=method,
                                         verbose=verbose,
                                         labeltest=labeltest)
            end = time.time()
            d_avg[method] = test_model(P,
                                       G,
                                       boundary,
                                       num_mode,
                                       y_list + test_y_list,
                                       modelist,
                                       event,
                                       maxorder,
                                       boundary_order,
                                       labeltest=labeltest)
            infer_time[method] = end - start
        else:
            raise NotImplementedError

        # print('Method: %s, d_avg: %.6f, infer_time: %.3f' % (method, d_avg[method], infer_time[method]))

    # best_method, best_avg = None, 1.0
    # for method, avg in d_avg.items():
    #     total_d_avg[method] += avg
    #     if avg < best_avg:
    #         best_method, best_avg = method, avg
    # for method, t in infer_time.items():
    #     total_time[method] += t
    # total_win[best_method] += 1

    print(
        '%d & $%s$ & %d & %.3f & %d & %.3f & %.5f & %.5f & %.5f& & %.1f & %.1f & %.1f& & \\\\'
        % (id, eid, len(y0), stepsize, T, mergeep, d_avg['dbscan'],
           d_avg['tolmerge'], d_avg['piecelinear'], infer_time['dbscan'],
           infer_time['tolmerge'], infer_time['piecelinear']))
    return d_avg, infer_time
예제 #9
0
def case5():
    modetr = experiment5.get_modetr(0)
    event = experiment5.get_event(0)
    labeltest = experiment5.get_labeltest(0)
    y0 = [[-1,1],[1,4],[2,-3]]
    T = 5
    stepsize = 0.01
    maxorder = 2
    boundary_order = 1
    num_mode = 3
    ep = 0.01
    mergeep=0.01
    method = 'piecelinear'
    t_list, y_list = simulation_ode_3(modetr, event, labeltest, y0, T, stepsize)
    P, G, (coeff1, coeff2, [first,second,third]) = infer_model(
                t_list, y_list, stepsize=stepsize, maxorder=maxorder, boundary_order=boundary_order,
                num_mode=num_mode, modelist=modetr, event=event, ep=ep, mergeep= mergeep,method=method, verbose=False,
                labeltest=labeltest)
    boundary = (coeff1, coeff2, [first,second,third])
    d_avg = test_model(
                P, G, boundary, num_mode, y_list, modetr, event, maxorder, boundary_order,
                labeltest=labeltest)
    print(d_avg)
    print(coeff1[0]/coeff1[0],coeff1[1]/coeff1[0],coeff1[2]/coeff1[0])
    print(coeff1[0]/coeff1[1],coeff1[1]/coeff1[1],coeff1[2]/coeff1[1])
    print(coeff2[0]/coeff2[0],coeff2[1]/coeff2[0],coeff2[2]/coeff2[0])
    print(coeff2[0]/coeff2[1],coeff2[1]/coeff2[1],coeff2[2]/coeff2[1])
    @eventAttr()
    def eventtest1(t,y):
        y0, y1 = y
        return coeff1[0] * y0 + coeff1[1] * y1 + coeff1[2]
    
    @eventAttr()
    def eventtest2(t,y):
        y0, y1 = y
        return coeff2[0] * y0 + coeff2[1] * y1 + coeff2[2]

    def labeltesttest(y):
        if eventtest1(0,y)>0:
            return first
        elif eventtest2(0,y)>0:
            return second
        else:
            return third

    ttest_list, ytest_list = simulation_ode_3([ode_test(G[0],maxorder),ode_test(G[1],maxorder),ode_test(G[2],maxorder)], [eventtest1,eventtest2], labeltesttest, y0, T, stepsize)
    for i, temp_y in enumerate(y_list):
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        if i == 0:
            plt.plot(y0_list,y1_list,c='b',label='Original')
        else:
            plt.plot(y0_list,y1_list,c='b')
    for i, temp_y in enumerate(ytest_list):
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        if i == 0:
            plt.plot(y0_list,y1_list,c='r', label='Inferred',linestyle='--')
        else:
            plt.plot(y0_list,y1_list,c='r',linestyle='--')
    plt.xlabel('x1')
    plt.ylabel('x2')
    plt.legend()
    plt.show()