예제 #1
0
def inference(base_model_name, path_to_npz, data_format, input_files, plot):
    model_func = get_model(base_model_name)
    height, width = (368, 432)
    e = measure(
        lambda: TfPoseEstimator2(path_to_npz,
                                 model_func,
                                 target_size=(width, height),
                                 data_format=data_format),
        'create TfPoseEstimator2')

    t0 = time.time()
    for idx, img_name in enumerate(input_files):
        image = measure(
            lambda: read_imgfile(
                img_name, width, height, data_format=data_format),
            'read_imgfile')
        humans, heatMap, pafMap = measure(lambda: e.inference(image),
                                          'e.inference')
        tl.logging.info('got %d humans from %s' % (len(humans), img_name))
        if humans:
            for h in humans:
                tl.logging.debug(h)
        if plot:
            if data_format == 'channels_first':
                image = image.transpose([1, 2, 0])
            plot_humans(image, heatMap, pafMap, humans, '%02d' % (idx + 1))
    tot = time.time() - t0
    mean = tot / len(input_files)
    tl.logging.info('inference all took: %f, mean: %f, FPS: %f' %
                    (tot, mean, 1.0 / mean))
예제 #2
0
def inference(base_model_name, path_to_npz, data_format, input_files, plot):
    def model_func(n_pos, target_size):
        full_model = get_full_model_func(base_model_name)
        return full_model(n_pos, target_size, data_format=data_format)

    height, width = (368, 432)
    e = measure(
        lambda: TfPoseEstimator2(
            path_to_npz, model_func, target_size=(width, height)),
        'create TfPoseEstimator2')

    t0 = time.time()
    for idx, img_name in enumerate(input_files):
        image = measure(
            lambda: read_imgfile(
                img_name, width, height, data_format=data_format),
            'read_imgfile')
        humans = measure(lambda: e.inference(image, resize_out_ratio=8.0),
                         'e.inference')
        tl.logging.info('got %d humans from %s' % (len(humans), img_name))
        if humans:
            for h in humans:
                tl.logging.debug(h)
            if plot:
                plot_humans(e, image, humans, '%02d' % (idx + 1))
    tot = time.time() - t0
    mean = tot / len(input_files)
    tl.logging.info('inference all took: %f, mean: %f, FPS: %f' %
                    (tot, mean, 1.0 / mean))
예제 #3
0
def inference(path_to_freezed_model, input_files):
    h, w = 368, 432
    e = measure(
        lambda: TfPoseEstimator2Loader(path_to_freezed_model,
                                       target_size=(w, h)),
        'create TfPoseEstimator2Loader')
    for idx, img_name in enumerate(input_files):
        image = read_imgfile(img_name, w, h)
        humans, heatMap, pafMap = measure(lambda: e.inference(image),
                                          'inference')
        print('got %d humans from %s' % (len(humans), img_name))
        if humans:
            for h in humans:
                print(h)
        plot_humans(image, heatMap, pafMap, humans, '%02d' % (idx + 1))
예제 #4
0
def inference(path_to_freezed_model, input_files):
    e = measure(
        lambda: TfPoseEstimator2Loader(path_to_freezed_model,
                                       target_size=(432, 368)),
        'create TfPoseEstimator2Loader')

    for idx, img_name in enumerate(input_files):
        image = read_imgfile(img_name, None, None)
        humans = measure(lambda: e.inference(image, resize_out_ratio=8.0),
                         'inference')
        print('got %d humans from %s' % (len(humans), img_name))
        if humans:
            for h in humans:
                print(h)
            plot_humans(e, image, humans, '%02d' % (idx + 1))
예제 #5
0
def main():
    args = parse_args()
    height, width, channel = 368, 432, 3
    images = []
    for name in args.images.split(','):
        x = read_imgfile(
            name, width, height,
            'channels_first')  # channels_first is required for tensorRT
        images.append(x)

    model_func = _get_model_func(args.base_model)
    model_inputs, model_outputs = model_func()
    input_names = [p.name[:-2] for p in model_inputs]
    output_names = [p.name[:-2] for p in model_outputs]

    print('input names: %s' % ','.join(input_names))
    print('output names: %s' %
          ','.join(output_names))  # outputs/conf,outputs/paf

    # with tf.Session() as sess:
    sess = tf.InteractiveSession()
    measure(lambda: tl.files.load_and_assign_npz_dict(args.path_to_npz, sess),
            'load npz')
    frozen_graph = tf.graph_util.convert_variables_to_constants(
        sess, sess.graph_def, output_names)
    tf_model = tf.graph_util.remove_training_nodes(frozen_graph)
    uff_model = measure(lambda: uff.from_tensorflow(tf_model, output_names),
                        'uff.from_tensorflow')
    print('uff model created')

    parser = uffparser.create_uff_parser()
    inputOrder = 0  # NCHW, https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/_nv_uff_parser_8h_source.html
    parser.register_input(input_names[0], (channel, height, width), inputOrder)
    for name in output_names:
        parser.register_output(name)

    G_LOGGER = trt.infer.ConsoleLogger(trt.infer.LogSeverity.INFO)
    max_batch_size = 1
    max_workspace_size = 1 << 30
    engine = measure(
        lambda: trt.utils.uff_to_trt_engine(
            G_LOGGER, uff_model, parser, max_batch_size, max_workspace_size),
        'trt.utils.uff_to_trt_engine')
    print('engine created')

    f_height, f_width = (height / 8, width / 8
                         )  #  TODO: derive from model_outputs
    post_process = PostProcessor((height, width), (f_height, f_width),
                                 'channels_first')

    for idx, x in enumerate(images):
        conf, paf = measure(lambda: infer(engine, x, 1), 'infer')
        humans, heat_up, paf_up = measure(lambda: post_process(conf, paf),
                                          'post_process')
        print('got %d humans' % (len(humans)))
        plot_humans(x.transpose([1, 2, 0]), heat_up, paf_up, humans,
                    '%02d' % (idx + 1))
예제 #6
0
def export_model(model_func, checkpoint_dir, path_to_npz, graph_filename):
    mkdir_p(checkpoint_dir)
    model_parameters = model_func()

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        measure(lambda: tl.files.load_and_assign_npz_dict(path_to_npz, sess),
                'load npz')
        measure(lambda: save_graph(sess, checkpoint_dir, graph_filename),
                'save_graph')
        measure(lambda: save_model(sess, checkpoint_dir), 'save_model')

    print('model_parameters:')
    for p in model_parameters:
        print('%s :: %s' % (p.name, p.shape))
예제 #7
0
    parser.add_argument('--data-format',
                        type=str,
                        default='channels_last',
                        help='channels_last | channels_first.')
    parser.add_argument('--plot',
                        type=bool,
                        default=False,
                        help='draw the results')
    parser.add_argument('--repeat',
                        type=int,
                        default=1,
                        help='repeat the images for n times for profiling.')
    parser.add_argument('--limit',
                        type=int,
                        default=100,
                        help='max number of images.')

    return parser.parse_args()


def main():
    args = parse_args()
    image_files = ([f for f in args.images.split(',') if f] *
                   args.repeat)[:args.limit]
    inference(args.base_model, args.path_to_npz, args.data_format, image_files,
              args.plot)


if __name__ == '__main__':
    measure(main)