def get_forward_output(self): X=self.get_input() [h,c], _ = theano.scan(self._fstep, sequences = X, outputs_info = [alloc_zeros_matrix(self.n_hidden), alloc_zeros_matrix(self.n_hidden)]) # outputs_info =T.unbroadcast(alloc_zeros_matrix(self.input.shape[0], # self.n_hidden), 0) ) return h
def get_output(self): X=self.get_input() [h,c], _ = theano.scan(self._step, sequences = X, outputs_info = [alloc_zeros_matrix(self.input.shape[1], self.n_hidden), alloc_zeros_matrix(self.input.shape[1], self.n_hidden)]) return h
def get_output(self): X = self.get_input() [h, c], _ = theano.scan(self._step, sequences=X, outputs_info=[ alloc_zeros_matrix(self.input.shape[1], self.n_hidden), alloc_zeros_matrix(self.input.shape[1], self.n_hidden) ]) return h
def get_forward_output(self): X=self.get_input() mask_x=self.x_mask h, _ = theano.scan(self._fstep, sequences = [X,mask_x], outputs_info = alloc_zeros_matrix(self.input.shape[1], self.n_hidden)) return h
def get_forward_output(self): X = self.get_input() mask_x = self.x_mask h, _ = theano.scan(self._fstep, sequences=[X, mask_x], outputs_info=alloc_zeros_matrix( self.input.shape[1], self.n_hidden)) return h
def get_output(self): X=self.get_input() h, _ = theano.scan(self._step, sequences = X, outputs_info = alloc_zeros_matrix(self.n_hidden)) # outputs_info =T.unbroadcast(alloc_zeros_matrix(self.input.shape[0], # self.n_hidden), 0) ) # outputs_info = [T.unbroadcast(T.alloc(self.h0_tm1, #self.n_layers,self.n_hidden),0),]) return h