def main(): # Show info when training log = logging.getLogger('tensorflow') log.setLevel(logging.INFO) classifier = get_classifier(8) train_spec = tf.estimator.TrainSpec(input_fn=lambda: input.batch_dataset( "dataset/reflected-train.tfrecords", tf.estimator.ModeKeys.TRAIN, 8), max_steps=2000) eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input.batch_dataset( "dataset/reflected-eval.tfrecords", tf.estimator.ModeKeys.EVAL, 8)) tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec)
def main(): # Show info when training log = logging.getLogger('tensorflow') log.setLevel(logging.INFO) classifier = get_classifier(8) for i in range(1,51): train_spec = tf.estimator.TrainSpec( input_fn=lambda:input.batch_dataset("dataset/shape-train-???.tfrecords", tf.estimator.ModeKeys.TRAIN, 8), max_steps= 10000 * i ) eval_spec = tf.estimator.EvalSpec( input_fn=lambda:input.batch_dataset("dataset/shape-eval-???.tfrecords", tf.estimator.ModeKeys.EVAL, 8) ) tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec)