def blurthday(): from imread import imread from pprint import pprint imfuckingshowalready = lambda mx: Image.fromarray(mx).show() identity = LUT() amatorka = LUT('amatorka') #miss_etikate = LUT('miss_etikate') #soft_elegance_1 = LUT('soft_elegance_1') #soft_elegance_2 = LUT('soft_elegance_2') im1 = imread(static.path(join('img', '06-DSCN4771.JPG'))) im2 = imread( static.path( join('img', '430023_3625646599363_1219964362_3676052_834528487_n.jpg'))) pprint(identity) pprint(amatorka) im9 = amatorka.transform(im1) pprint(im9) imfuckingshowalready(im9) print im1 print im2
def read_acv(self, name): print "Reading curves from %s.acv" % name acv_path = static.path('acv', "%s.acv" % name) with open(acv_path, "rb") as acv_file: _, self.count = unpack("!hh", acv_file.read(4)) for i in xrange(self.count): self.curves.append( self.read_one_curve(acv_file, self.channel_name(i)))
def read_acv(self, name): print "Reading curves from %s.acv" % name acv_path = static.path( 'acv', "%s.acv" % name) with open(acv_path, "rb") as acv_file: _, self.count = unpack("!hh", acv_file.read(4)) for i in xrange(self.count): self.curves.append( self.read_one_curve( acv_file, self.channel_name(i)))
def blurthday(): from imread import imread from pprint import pprint imfuckingshowalready = lambda mx: Image.fromarray(mx).show() identity = LUT() amatorka = LUT('amatorka') #miss_etikate = LUT('miss_etikate') #soft_elegance_1 = LUT('soft_elegance_1') #soft_elegance_2 = LUT('soft_elegance_2') im1 = imread(static.path(join('img', '06-DSCN4771.JPG'))) im2 = imread(static.path(join( 'img', '430023_3625646599363_1219964362_3676052_834528487_n.jpg'))) pprint(identity) pprint(amatorka) im9 = amatorka.transform(im1) pprint(im9) imfuckingshowalready(im9) print im1 print im2
def old_main(): #imfuckingshowalready = lambda mx: Image.fromarray(mx).show() old_identity = static.path(join('lut', 'identity.png')) im_old_identity = imread.imread(old_identity) im_identity = numpy.zeros_like(im_old_identity) for bx in xrange(0, 8): for by in xrange(0, 8): for r in xrange(0, 64): for g in xrange(0, 64): im_identity[ int(g + by * 64), int(r + bx * 64)] = numpy.array(( int(r * 255.0 / 63.0 + 0.5), int(g * 255.0 / 63.0 + 0.5), int((bx + by * 8.0) * 255.0 / 63.0 + 0.5)), dtype=numpy.uint8) print "THE OLD: %s, %s, %s" % ( im_old_identity.size, im_old_identity.shape, str(im_old_identity.dtype)) #print im_old_identity print "" print "THE NEW: %s, %s, %s" % ( im_identity.size, im_identity.shape, str(im_identity.dtype)) #print im_identity print "" print "THE END: %s" % bool(im_old_identity.shape == im_identity.shape) #print im_old_identity == im_identity #imfuckingshowalready(im_identity) #imfuckingshowalready(im_old_identity) pil_im_old_identity = Image.fromarray(im_old_identity) pil_im_old_identity.save('/tmp/im_old_identity.jpg', format="JPEG") pil_im_identity = Image.fromarray(im_identity) pil_im_identity.save('/tmp/im_identity.jpg', format="JPEG")
def old_main(): #imfuckingshowalready = lambda mx: Image.fromarray(mx).show() old_identity = static.path(join('lut', 'identity.png')) im_old_identity = imread.imread(old_identity) im_identity = numpy.zeros_like(im_old_identity) for bx in xrange(0, 8): for by in xrange(0, 8): for r in xrange(0, 64): for g in xrange(0, 64): im_identity[int(g + by * 64), int(r + bx * 64)] = numpy.array( (int(r * 255.0 / 63.0 + 0.5), int(g * 255.0 / 63.0 + 0.5), int((bx + by * 8.0) * 255.0 / 63.0 + 0.5)), dtype=numpy.uint8) print "THE OLD: %s, %s, %s" % (im_old_identity.size, im_old_identity.shape, str(im_old_identity.dtype)) #print im_old_identity print "" print "THE NEW: %s, %s, %s" % (im_identity.size, im_identity.shape, str(im_identity.dtype)) #print im_identity print "" print "THE END: %s" % bool(im_old_identity.shape == im_identity.shape) #print im_old_identity == im_identity #imfuckingshowalready(im_identity) #imfuckingshowalready(im_old_identity) pil_im_old_identity = Image.fromarray(im_old_identity) pil_im_old_identity.save('/tmp/im_old_identity.jpg', format="JPEG") pil_im_identity = Image.fromarray(im_identity) pil_im_identity.save('/tmp/im_identity.jpg', format="JPEG")
def process(self, img): import numpy from PIL import Image out = kernels.gaussian_blur_filter( numpy.array(img), sigma=self.n) return Image.fromarray(out) if __name__ == '__main__': from PIL import Image from instakit.utils import static image_paths = map( lambda image_file: static.path('img', image_file), static.listfiles('img')) image_inputs = map( lambda image_path: Image.open(image_path).convert('RGB'), image_paths) for image_input in image_inputs: #image_input.show() #GaussianBlur(n=3).process(image_input).show() Contour().process(image_input).show() Detail().process(image_input).show() Emboss().process(image_input).show() EdgeEnhance().process(image_input).show() EdgeEnhanceMore().process(image_input).show() FindEdges().process(image_input).show() Smooth().process(image_input).show()
self.nY = nY else: self.nY = n def process(self, img): import numpy from PIL import Image out = kernels.gaussian_blur_filter(numpy.array(img), sigma=self.n) return Image.fromarray(out) if __name__ == '__main__': from PIL import Image from instakit.utils import static image_paths = map(lambda image_file: static.path('img', image_file), static.listfiles('img')) image_inputs = map( lambda image_path: Image.open(image_path).convert('RGB'), image_paths) for image_input in image_inputs: #image_input.show() #GaussianBlur(n=3).process(image_input).show() Contour().process(image_input).show() Detail().process(image_input).show() Emboss().process(image_input).show() EdgeEnhance().process(image_input).show() EdgeEnhanceMore().process(image_input).show() FindEdges().process(image_input).show() Smooth().process(image_input).show() SmoothMore().process(image_input).show()
def _read_png_matrix(cls, name): print "Reading LUT image: %s" % static.path( join('lut', '%s.png' % name)) return imread.imread(static.path(join('lut', '%s.png' % name)))
def _read_png_matrix(cls, name): print "Reading LUT image: %s" % static.path(join('lut', '%s.png' % name)) return imread.imread( static.path(join('lut', '%s.png' % name)))
class SaltAndPepperNoise(Noise): """ Add 'salt and pepper noise' -- replace random pixel values with 1.0f (255) or zero """ mode = 's&p' class SpeckleNoise(Noise): """ Add multiplicative noise using out = image + n*image (where n is uniform noise with specified mean & variance) """ mode = 'speckle' if __name__ == '__main__': from PIL import Image from instakit.utils import static image_paths = map( lambda image_file: static.path('img', image_file), static.listfiles('img')) image_inputs = map( lambda image_path: Image.open(image_path).convert('RGB'), image_paths) noises = [ GaussianNoise, PoissonNoise, GaussianLocalVarianceNoise, SaltNoise, PepperNoise, SaltAndPepperNoise, SpeckleNoise ] for idx, image_input in enumerate(image_inputs + image_inputs[:2]): image_input.show() #Noise().process(image_input).show() noises[idx]().process(image_input).show()