acc_ish = float(correct_ish) / float(total) return [acc, acc_ish, correct, correct_ish] if __name__ == '__main__': trained_model_names = [ 'TDID_VID_archDPlus_ntr_0_8000_81.54629_50.00000', #'TDID_archMM_6_9_8.38768_0.00000', ] # load data data_path = '/net/bvisionserver3/playpen10/ammirato/Data/ILSVRC/' #CREATE TRAIN/TEST splits data_set = VID_Loader(data_path, 'val_single', target_size=[200, 16]) num_images = 100 batch = True #test multiple trained nets for model_name in trained_model_names: print model_name # load net net = TDID() network.load_net(trained_model_path + model_name + '.h5', net) print('load model successfully!') net.cuda() net.eval()
collate_fn=AVD.collate) if save_freq > len(train_set)/batch_size: save_freq = len(train_set)/batch_size - 5*batch_size print save_freq use_VID = False VID_data_path = '/net/bvisionserver3/playpen10/ammirato/Data/ILSVRC/' target_size = [200,16] ##CREATE TRAIN/TEST splits vid_train_set = VID_Loader(VID_data_path,'train_single', target_size=target_size, multiple_targets=True, batch_size=batch_size) #write meta data out meta_fid = open(os.path.join(text_out_dir,save_name_base+'.txt'),'w') meta_fid.write('save name: {}\n'.format(save_name_base)) meta_fid.write('batch norm: {}\n'.format(use_batch_norm)) meta_fid.write('torch vgg: {}\n'.format(use_torch_vgg)) meta_fid.write('pretrained vgg: {}\n'.format(use_pretrained_vgg)) meta_fid.write('batch_size: {}\n'.format(batch_size)) meta_fid.write('vary images: {}\n'.format(vary_images)) meta_fid.write('chosen_ids: {}\n'.format(chosen_ids)) meta_fid.write('val chosen_ids: {}\n'.format(val_chosen_ids)) meta_fid.write('train_list: {}\n'.format(train_list)) meta_fid.write('val_lists: {}\n'.format(val_lists))
# load config cfg_from_file(cfg_file) lr = cfg.TRAIN.LEARNING_RATE momentum = cfg.TRAIN.MOMENTUM weight_decay = cfg.TRAIN.WEIGHT_DECAY disp_interval = 10 # cfg.TRAIN.DISPLAY log_interval = cfg.TRAIN.LOG_IMAGE_ITERS # load data #data_path = '/playpen/ammirato/Downloads/ILSVRC/' data_path = '/net/bvisionserver3/playpen10/ammirato/Data/ILSVRC/' target_size = [200, 32] #CREATE TRAIN/TEST splits train_set = VID_Loader(data_path, 'train_single', target_size=target_size) val_set = VID_Loader(data_path, 'val_single', target_size=target_size) #load net definition and init parameters net = TDID() if load_trained_model: #load a previously trained model network.load_net(trained_model_path + trained_model_name, net) else: #load pretrained vgg weights, and init everything else randomly network.weights_normal_init(net, dev=0.01) #network.load_pretrained_tdid(net, pretrained_model) vgg16_bn = models.vgg16_bn(pretrained=True) net.features = torch.nn.Sequential( *list(vgg16_bn.features.children())[:-1])
chosen_ids=chosen_ids, by_box=False, fraction_of_no_box=0.02, bn_normalize=use_batch_norm) #create train/test loaders, with CUSTOM COLLATE function trainloader = torch.utils.data.DataLoader(train_set, batch_size=2, shuffle=True, collate_fn=AVD.collate) VID_data_path = '/net/bvisionserver3/playpen10/ammirato/Data/ILSVRC/' target_size = [200, 16] #CREATE TRAIN/TEST splits train_set_VID = VID_Loader(VID_data_path, 'train_single', target_size=target_size) #write meta data out meta_fid = open(os.path.join(text_out_dir, save_name_base + '.txt'), 'w') meta_fid.write('save name: {}\n'.format(save_name_base)) meta_fid.write('batch norm: {}\n'.format(use_batch_norm)) meta_fid.write('chosen_ids: {}\n'.format(chosen_ids)) meta_fid.write('train_list: {}\n'.format(train_list)) meta_fid.write('target_path: {}\n'.format(target_path)) meta_fid.write('VID_target_size: {}\n'.format(target_size)) meta_fid.write('vid_set: {}\n'.format('train_single')) meta_fid.write('learing rate: {}\n'.format(lr)) meta_fid.write('epoch or iters: {}\n'.format('epoch')) meta_fid.write('AVD_freq: {}\n'.format('every other step')) meta_fid.close()
if rand_seed is not None: np.random.seed(rand_seed) # load config cfg_from_file(cfg_file) lr = cfg.TRAIN.LEARNING_RATE * 10 momentum = cfg.TRAIN.MOMENTUM weight_decay = cfg.TRAIN.WEIGHT_DECAY disp_interval = 10 # cfg.TRAIN.DISPLAY log_interval = cfg.TRAIN.LOG_IMAGE_ITERS # load data data_path = '/playpen/ammirato/Downloads/ILSVRC/' #CREATE TRAIN/TEST splits train_set = VID_Loader(data_path, 'val_single') val_set = VID_Loader(data_path, 'val2_single') #load net definition and init parameters net = TDID() if load_trained_model: #load a previously trained model network.load_net(trained_model_path + trained_model_name, net) else: #load pretrained vgg weights, and init everything else randomly network.weights_normal_init(net, dev=0.01) network.load_pretrained_tdid(net, pretrained_model) #put net on gpu net.cuda() net.train()
acc = 0 acc_ish = 0 if total != 0: acc = float(correct) / float(total) acc_ish = float(correct_ish) / float(total) return [acc, acc_ish] if __name__ == '__main__': # load data # load data data_path = '/playpen/ammirato/Downloads/ILSVRC/' #CREATE TRAIN/TEST splits data_set = VID_Loader(data_path, 'val_single') num_images = 100 batch = True #test multiple trained nets for model_name in trained_model_names: print model_name # load net net = TDID() network.load_net(trained_model_path + model_name + '.h5', net) print('load model successfully!') net.cuda() net.eval()