def test_read_hmm_evalue(self): """ Test that the hmm hits are well read, and returned only if evalue is < to the given threshold. """ rep_name = "acba.007.p01.13" replicon_id = 'ACBA.007.P01_13' replicon_path = self.find_data( os.path.join('Replicons', rep_name + '.fst')) prot_file = self.find_data( os.path.join('Proteins', replicon_id + '.prt')) args = argparse.Namespace() args.gembase = False args.replicon = replicon_path cfg = Config(args) sequences_db = read_multi_prot_fasta(replicon_path) replicon = next(sequences_db) prot_db = ProdigalDB(replicon, cfg, prot_file=prot_file) infile = self.find_data( os.path.join("Results_Integron_Finder_{}".format(rep_name), "tmp_{}".format(replicon_id), "{}_intI.res".format(replicon_id))) df1 = read_hmm(rep_name, prot_db, infile, cfg, evalue=1.95e-25) exp1 = pd.DataFrame(data={ "Accession_number": rep_name, "query_name": "intI_Cterm", "ID_query": "-", "ID_prot": "ACBA.007.P01_13_1", "strand": 1, "pos_beg": 55, "pos_end": 1014, "evalue": 1.9e-25 }, index=[0]) exp1 = exp1[[ "Accession_number", "query_name", "ID_query", "ID_prot", "strand", "pos_beg", "pos_end", "evalue" ]] pdt.assert_frame_equal(df1, exp1) df2 = read_hmm(replicon_id, prot_db, infile, cfg, evalue=1.9e-25) exp2 = pd.DataFrame(columns=[ "Accession_number", "query_name", "ID_query", "ID_prot", "strand", "pos_beg", "pos_end", "evalue" ]) intcols = ["pos_beg", "pos_end", "strand"] floatcol = ["evalue"] exp2[intcols] = exp2[intcols].astype(int) exp2[floatcol] = exp2[floatcol].astype(float) pdt.assert_frame_equal(df2, exp2)
def test_make_protfile_no_prodigal(self): file_name = 'acba.007.p01.13' replicon_path = self.find_data( os.path.join('Replicons', file_name + '.fst')) self.args.replicon = replicon_path self.args.prodigal = 'foo_bar' cfg = Config(self.args) seq_db = read_multi_prot_fasta(replicon_path) replicon = next(seq_db) replicon.path = replicon_path with self.assertRaises(RuntimeError) as ctx: ProdigalDB(replicon, cfg)
def test_ProteinDB(self): file_name = 'acba.007.p01.13' replicon_path = self.find_data( os.path.join('Replicons', file_name + '.fst')) self.args.replicon = replicon_path cfg = Config(self.args) seq_db = read_multi_prot_fasta(replicon_path) replicon = next(seq_db) replicon.path = replicon_path os.makedirs(cfg.tmp_dir(replicon.id)) db = ProdigalDB(replicon, cfg) self.assertTrue(db.replicon.id, replicon.id)
def test_find_integron_calin_threshold(self): replicon_name = 'ESCO001.B.00018.P002' replicon_path = self.find_data( os.path.join('Replicons', replicon_name + '.fst')) prot_file = self.find_data( os.path.join('Proteins', replicon_name + '.prt')) topologies = Topology('circ') with FastaIterator(replicon_path) as sequences_db: sequences_db.topologies = topologies replicon = next(sequences_db) replicon_results_path = self.find_data( os.path.join('Results_Integron_Finder_{}'.format(replicon_name), 'tmp_{}'.format(replicon.id))) attc_file = os.path.join(replicon_results_path, '{}_attc_table.res'.format(replicon.id)) intI_file = os.path.join(replicon_results_path, '{}_intI.res'.format(replicon.id)) phageI_file = os.path.join(replicon_results_path, '{}_phage_int.res'.format(replicon.id)) args = argparse.Namespace() args.no_proteins = False args.keep_palindromes = True args.distance_threshold = 4000 args.attc_model = 'attc_4.cm' args.evalue_attc = 1.0 args.max_attc_size = 200 args.min_attc_size = 40 args.local_max = False args.gembase = False args.union_integrases = False args.calin_threshold = 2 cfg = Config(args) cfg._prefix_data = os.path.join(os.path.dirname(__file__), 'data') prot_db = ProdigalDB(replicon, cfg, prot_file=prot_file) with self.catch_log() as log: integrons = find_integron(replicon, prot_db, attc_file, intI_file, phageI_file, cfg) self.assertEqual(len(integrons), 2) args.calin_threshold = 3 cfg = Config(args) cfg._prefix_data = os.path.join(os.path.dirname(__file__), 'data') with self.catch_log() as log: integrons = find_integron(replicon, prot_db, attc_file, intI_file, phageI_file, cfg) self.assertEqual(len(integrons), 1)
def test_ProteinDB_no_prodigal(self): file_name = 'acba.007.p01.13' replicon_path = self.find_data( os.path.join('Replicons', file_name + '.fst')) self.args.replicon = replicon_path cfg = Config(self.args) seq_db = read_multi_prot_fasta(replicon_path) replicon = next(seq_db) replicon.path = replicon_path os.makedirs(cfg.tmp_dir(replicon.id)) self.args.prodigal = None with self.assertRaises(RuntimeError) as ctx: ProdigalDB(replicon, cfg)
def test_add_proteins(self): replicon_name = 'pssu.001.c01.13' replicon_path = self.find_data(os.path.join('Replicons', replicon_name + '.fst')) topologies = Topology('lin') with FastaIterator(replicon_path) as sequences_db: sequences_db.topologies = topologies replicon = next(sequences_db) prot_file = os.path.join(self._data_dir, '{}.prt.short'.format(replicon_name)) args = argparse.Namespace() args.gembase = False args.annot_parser_name = None cfg = Config(args) integron = Integron(replicon, cfg) data_attc = {"pos_beg": [3072863, 3073496, 3074121, 3075059, 3075593, 3076281, 3076659], "pos_end": [3072931, 3073555, 3074232, 3075118, 3075652, 3076340, 3076718], "strand": [-1] * 7, "evalue": [2.5e-06, 7e-08, 6.5e-08, 3.2e-06, 4.1e-07, 1.4e-08, 4e-08], "type_elt": ['attC'] * 7, "annotation": ['attC'] * 7, "model": ['attc_4'] * 7, "distance_2attC": [np.nan, 565.0, 566.0, 827.0, 475.0, 629.0, 319.0]} attC = pd.DataFrame(data_attc, columns=self.columns, index=['attc_00{}'.format(i) for i in range(len(data_attc['pos_beg']))]) attC = attC.astype(dtype=self.dtype) integron.attC = attC prot_db = ProdigalDB(replicon, cfg, prot_file=prot_file) integron.add_proteins(prot_db) exp_proteins = pd.DataFrame({'pos_beg': [3071974, 3072950, 3074243, 3076720], 'pos_end': [3072855, 3073468, 3075055, 3077511], 'strand': [-1] * 4, 'evalue': [np.nan] * 4, 'type_elt': ['protein'] * 4, 'annotation': ['protein'] * 4, 'model': ['NA'] * 4, 'distance_2attC': [np.nan] *4 }, index=['PSSU.001.C01_13_281{}'.format(i) for i in range(5, 9)], columns=self.columns ) exp_proteins = exp_proteins.astype(dtype=self.dtype) pdt.assert_frame_equal(exp_proteins.sort_index(), integron.proteins.sort_index())
def test_protfile(self): file_name = 'acba.007.p01.13' prot_name = 'ACBA.007.P01_13.prt' replicon_path = self.find_data( os.path.join('Replicons', file_name + '.fst')) self.args.replicon = replicon_path cfg = Config(self.args) seq_db = read_multi_prot_fasta(replicon_path) replicon = next(seq_db) replicon.path = replicon_path os.makedirs(cfg.tmp_dir(replicon.id)) db = ProdigalDB(replicon, cfg) self.assertEqual(os.path.join(cfg.tmp_dir(replicon.id), prot_name), db.protfile)
def test_iter(self): file_name = 'acba.007.p01.13' prot_name = 'ACBA.007.P01_13.prt' replicon_path = self.find_data( os.path.join('Replicons', file_name + '.fst')) self.args.replicon = replicon_path cfg = Config(self.args) seq_db = read_multi_prot_fasta(replicon_path) replicon = next(seq_db) replicon.path = replicon_path os.makedirs(cfg.tmp_dir(replicon.id)) db = ProdigalDB(replicon, cfg) idx = SeqIO.index(self.find_data(os.path.join('Proteins', prot_name)), 'fasta', alphabet=Seq.IUPAC.extended_protein) for exp_seq_id, get_seq_id in zip(idx, db): self.assertEqual(exp_seq_id, get_seq_id)
def test_read_hmm(self): """ Test that the hmm hits are well read """ rep_name = "acba.007.p01.13" replicon_id = 'ACBA.007.P01_13' replicon_path = self.find_data( os.path.join('Replicons', rep_name + '.fst')) prot_file = self.find_data( os.path.join('Proteins', replicon_id + '.prt')) args = argparse.Namespace() args.gembase = False args.replicon = replicon_path cfg = Config(args) sequences_db = read_multi_prot_fasta(replicon_path) replicon = next(sequences_db) prot_db = ProdigalDB(replicon, cfg, prot_file=prot_file) infile = self.find_data( os.path.join("Results_Integron_Finder_{}".format(rep_name), "tmp_{}".format(replicon_id), "{}_intI.res".format(replicon_id))) df = read_hmm(rep_name, prot_db, infile, cfg) exp = pd.DataFrame(data={ "Accession_number": rep_name, "query_name": "intI_Cterm", "ID_query": "-", "ID_prot": "ACBA.007.P01_13_1", "strand": 1, "pos_beg": 55, "pos_end": 1014, "evalue": 1.9e-25 }, index=[0]) exp = exp[[ "Accession_number", "query_name", "ID_query", "ID_prot", "strand", "pos_beg", "pos_end", "evalue" ]] pdt.assert_frame_equal(df, exp)
def test_read_hmm_cov2(self): """ Test that the hmm hits are well read, it returns only the hits with coverage > given threshold """ rep_name = "acba.007.p01.13" replicon_id = 'ACBA.007.P01_13' replicon_path = self.find_data( os.path.join('Replicons', rep_name + '.fst')) prot_file = self.find_data( os.path.join('Proteins', replicon_id + '.prt')) args = argparse.Namespace() args.gembase = False args.replicon = replicon_path cfg = Config(args) sequences_db = read_multi_prot_fasta(replicon_path) replicon = next(sequences_db) prot_db = ProdigalDB(replicon, cfg, prot_file=prot_file) infile = self.find_data( os.path.join("fictive_results", "{}_intI.res".format(replicon_id))) df1 = read_hmm(rep_name, prot_db, infile, cfg, coverage=0.7) exp1 = pd.DataFrame(data={ "Accession_number": [rep_name] * 2, "query_name": ["intI_Cterm"] * 2, "ID_query": ["-", "-"], "ID_prot": ["ACBA.007.P01_13_1", "ACBA.007.P01_13_2"], "strand": [1, -1], "pos_beg": [55, 905], "pos_end": [1014, 1609], "evalue": [1.9e-25, 1e-3] }, index=[0, 1]) exp1 = exp1[[ "Accession_number", "query_name", "ID_query", "ID_prot", "strand", "pos_beg", "pos_end", "evalue" ]] pdt.assert_frame_equal(df1, exp1)
def test_make_protfile_no_dir(self): file_name = 'acba.007.p01.13' prot_name = 'ACBA.007.P01_13.prt' replicon_path = self.find_data( os.path.join('Replicons', file_name + '.fst')) self.args.replicon = replicon_path cfg = Config(self.args) seq_db = read_multi_prot_fasta(replicon_path) replicon = next(seq_db) replicon.path = replicon_path db = ProdigalDB(replicon, cfg) for seq_nb, seqs in enumerate( zip( read_multi_prot_fasta( self.find_data(os.path.join('Proteins', prot_name))), read_multi_prot_fasta(db.protfile)), 1): expected, test = seqs self.assertEqual(expected.id, test.id) self.assertEqual(seq_nb, 23)
def setUp(self): """ Define variables common to all tests """ self.replicon_path = self.find_data( os.path.join('Replicons', "acba.007.p01.13.fst")) self.replicon_id = 'ACBA.007.P01_13' topologies = Topology('lin') with FastaIterator(self.replicon_path) as sequences_db: sequences_db.topologies = topologies self.seq = next(sequences_db) self.prot_file = self.find_data( os.path.join("Results_Integron_Finder_acba.007.p01.13", "tmp_{}".format(self.replicon_id), "{}.prt".format(self.replicon_id))) args = argparse.Namespace() cfg = Config(args) self.prot_db = ProdigalDB(self.seq, cfg, prot_file=self.prot_file) self.dist_threshold = 4000
def test_get_description(self): # SeqDesc(id, strand, strat, stop) file_name = 'acba.007.p01.13' replicon_path = self.find_data( os.path.join('Replicons', file_name + '.fst')) self.args.replicon = replicon_path cfg = Config(self.args) seq_db = read_multi_prot_fasta(replicon_path) replicon = next(seq_db) replicon.path = replicon_path os.makedirs(cfg.tmp_dir(replicon.id)) db = ProdigalDB(replicon, cfg) descriptions = { 'ACBA.007.P01_13_23': SeqDesc('ACBA.007.P01_13_23', -1, 19721, 20254), 'ACBA.007.P01_13_1': SeqDesc('ACBA.007.P01_13_1', 1, 55, 1014) } for seq_id, desc in descriptions.items(): self.assertEqual(desc, db.get_description(seq_id))
def test_getitem(self): file_name = 'acba.007.p01.13' prot_name = 'ACBA.007.P01_13.prt' replicon_path = self.find_data( os.path.join('Replicons', file_name + '.fst')) self.args.replicon = replicon_path cfg = Config(self.args) seq_db = read_multi_prot_fasta(replicon_path) replicon = next(seq_db) replicon.path = replicon_path os.makedirs(cfg.tmp_dir(replicon.id)) db = ProdigalDB(replicon, cfg) exp = read_multi_prot_fasta( self.find_data(os.path.join('Proteins', prot_name))) for prot_expected in exp: prot_received = db[prot_expected.id] self.assertEqual(prot_received.id, prot_expected.id) self.assertEqual(prot_received.seq, prot_expected.seq) with self.assertRaises(KeyError) as ctx: db['nimport_naoik'] self.assertEqual(str(ctx.exception), "'nimport_naoik'")
def test_read_empty(self): """ Test that when there are no hits in the hmm result file, it returns an empty dataframe, without error. """ rep_name = "acba.007.p01.13" replicon_id = 'ACBA.007.P01_13' replicon_path = self.find_data( os.path.join('Replicons', rep_name + '.fst')) prot_file = self.find_data( os.path.join('Proteins', replicon_id + '.prt')) args = argparse.Namespace() args.gembase = False args.replicon = replicon_path cfg = Config(args) sequences_db = read_multi_prot_fasta(replicon_path) replicon = next(sequences_db) prot_db = ProdigalDB(replicon, cfg, prot_file=prot_file) infile = self.find_data( os.path.join("fictive_results", "{}_intI-empty.res".format(replicon_id))) df = read_hmm(rep_name, prot_db, infile, cfg) exp = pd.DataFrame(columns=[ "Accession_number", "query_name", "ID_query", "ID_prot", "strand", "pos_beg", "pos_end", "evalue" ]) intcols = ["pos_beg", "pos_end", "strand"] floatcol = ["evalue"] exp[intcols] = exp[intcols].astype(int) exp[floatcol] = exp[floatcol].astype(float) pdt.assert_frame_equal(df, exp)
def test_find_integron_proteins_n_union_integrase(self): replicon_name = 'OBAL001.B.00005.C001' replicon_id = 'OBAL001.B.00005.C001' replicon_path = self.find_data( os.path.join('Replicons', replicon_name + '.fst')) prot_file = self.find_data( os.path.join('Proteins', replicon_name + '.prt')) topologies = Topology('lin') with FastaIterator(replicon_path) as sequences_db: sequences_db.topologies = topologies replicon = next(sequences_db) result_dir = 'Results_Integron_Finder_{}.union'.format(replicon_name) attc_file = self.find_data( os.path.join(result_dir, 'tmp_{}'.format(replicon.id), '{}_attc_table.res'.format(replicon.id))) intI_file = self.find_data( os.path.join(result_dir, 'tmp_{}'.format(replicon.id), '{}_intI.res'.format(replicon.id))) phageI_file = self.find_data( os.path.join(result_dir, 'tmp_{}'.format(replicon.id), '{}_phage_int.res'.format(replicon.id))) args = argparse.Namespace() args.evalue_attc = 1. args.max_attc_size = 200 args.min_attc_size = 40 args.distance_threshold = 4000 # (4kb at least between 2 different arrays) args.calin_threshold = 2 args.attc_model = 'attc_4.cm' args.no_proteins = False args.keep_palindromes = True args.union_integrases = True args.gembase = False # needed by read_hmm which is called when no_proteins == False args.local_max = False cfg = Config(args) cfg._prefix_data = os.path.join(os.path.dirname(__file__), 'data') prot_db = ProdigalDB(replicon, cfg, prot_file=prot_file) exp_msg = """In replicon {}, there are: - 3 complete integron(s) found with a total 4 attC site(s) - 0 CALIN element(s) found with a total of 0 attC site(s) - 2 In0 element(s) found with a total of 0 attC site""".format(replicon.id) with self.catch_log() as log: integrons = find_integron(replicon, prot_db, attc_file, intI_file, phageI_file, cfg) catch_msg = log.get_value().strip() self.assertEqual(catch_msg, exp_msg) self.assertEqual(len(integrons), 5) integron = integrons[0] self.assertEqual(integron.replicon.name, replicon_id) empty = pd.DataFrame(columns=self.columns).astype(dtype=self.dtype) exp_int = [] exp_int.append( pd.DataFrame([[ 418072, 419283, 1, 5.400000e-25, 'protein', 'Phage_integrase', np.nan, 'intI' ]], columns=self.columns, index=['OBAL001.B.00005.C001_388' ]).astype(dtype=self.dtype)) exp_int.append( pd.DataFrame([[ 434671, 440118, -1, 0.085, 'protein', 'Phage_integrase', np.nan, 'intI' ]], columns=self.columns, index=['OBAL001.B.00005.C001_399' ]).astype(dtype=self.dtype)) exp_int.append( pd.DataFrame([[ 516941, 517834, -1, 1.200000e-54, 'protein', 'Phage_integrase', np.nan, 'intI' ]], columns=self.columns, index=['OBAL001.B.00005.C001_472' ]).astype(dtype=self.dtype)) exp_int.append( pd.DataFrame([[ 1940269, 1941171, 1, 4.200000e-43, 'protein', 'Phage_integrase', np.nan, 'intI' ]], columns=self.columns, index=['OBAL001.B.00005.C001_1793' ]).astype(dtype=self.dtype)) exp_int.append( pd.DataFrame([[ 1545830, 1546807, -1, 1.100000e-21, 'protein', 'intersection_tyr_intI', np.nan, 'intI' ]], columns=self.columns, index=['OBAL001.B.00005.C001_1416' ]).astype(dtype=self.dtype)) exp_attC = [] exp_attC.append( pd.DataFrame( [[421689, 421764, 1, 0.13, 'attC', 'attc_4', np.nan, 'attC']], columns=self.columns, index=['attc_001']).astype(dtype=self.dtype)) exp_attC.append( pd.DataFrame([[ 442458, 442514, -1, 7.000000e-07, 'attC', 'attc_4', np.nan, 'attC' ]], columns=self.columns, index=['attc_001']).astype(dtype=self.dtype)) exp_attC.append(empty) exp_attC.append(empty) exp_attC.append( pd.DataFrame([[ 1547800, 1547859, 1, 0.00049, 'attC', 'attc_4', np.nan, 'attC' ], [1548775, 1548834, 1, 0.00009, 'attC', 'attc_4', 916.0, 'attC'] ], columns=self.columns, index=['attc_001', 'attc_002']).astype(dtype=self.dtype)) for i, integron in enumerate(integrons): self.assertEqual(integron.replicon.name, replicon_id) pdt.assert_frame_equal(integron.integrase, exp_int[i]) pdt.assert_frame_equal(integron.attC, exp_attC[i]) pdt.assert_frame_equal(integron.promoter, empty) pdt.assert_frame_equal(integron.attI, empty) pdt.assert_frame_equal(integron.proteins, empty)
def test_find_integron_proteins_circ_replicon(self): replicon_name = 'acba.007.p01.13' replicon_id = 'ACBA.007.P01_13' replicon_path = self.find_data( os.path.join('Replicons', replicon_name + '.fst')) prot_file = self.find_data( os.path.join('Proteins', replicon_id + '.prt')) topologies = Topology('circ') with FastaIterator(replicon_path) as sequences_db: sequences_db.topologies = topologies replicon = next(sequences_db) exp_result_dir = 'Results_Integron_Finder_acba.007.p01.13.circular' attc_file = self.find_data( os.path.join(exp_result_dir, 'tmp_{}'.format(replicon.id), '{}_attc_table.res'.format(replicon.id))) intI_file = self.find_data( os.path.join(exp_result_dir, 'tmp_{}'.format(replicon.id), '{}_intI.res'.format(replicon.id))) phageI_file = self.find_data( os.path.join(exp_result_dir, 'tmp_{}'.format(replicon.id), '{}_phage_int.res'.format(replicon.id))) args = argparse.Namespace() args.no_proteins = False args.keep_palindromes = True args.union_integrases = False args.gembase = False # needed by read_hmm which is called when no_proteins == False args = argparse.Namespace() args.evalue_attc = 1. args.max_attc_size = 200 args.min_attc_size = 40 args.distance_threshold = 4000 # (4kb at least between 2 different arrays) args.attc_model = 'attc_4.cm' args.no_proteins = False args.gembase = False # needed by read_hmm which is called when no_proteins == False args.union_integrases = False args.keep_palindromes = True args.calin_threshold = 2 args.local_max = False cfg = Config(args) cfg._prefix_data = os.path.join(os.path.dirname(__file__), 'data') prot_db = ProdigalDB(replicon, cfg, prot_file=prot_file) exp_msg = """In replicon {}, there are: - 1 complete integron(s) found with a total 3 attC site(s) - 0 CALIN element(s) found with a total of 0 attC site(s) - 0 In0 element(s) found with a total of 0 attC site""".format(replicon.id) with self.catch_log() as log: integrons = find_integron(replicon, prot_db, attc_file, intI_file, phageI_file, cfg) catch_msg = log.get_value().strip() self.assertEqual(catch_msg, exp_msg) self.assertEqual(len(integrons), 1) integron = integrons[0] self.assertEqual(integron.replicon.name, replicon_id) exp = pd.DataFrame( { 'annotation': 'intI', 'distance_2attC': np.nan, 'evalue': 1.900000e-25, 'model': 'intersection_tyr_intI', 'pos_beg': 55, 'pos_end': 1014, 'strand': 1, 'type_elt': 'protein' }, columns=self.columns, index=['ACBA.007.P01_13_1']) exp = exp.astype(dtype=self.dtype) pdt.assert_frame_equal(integron.integrase, exp) exp = pd.DataFrame( { 'annotation': ['attC'] * 3, 'distance_2attC': [np.nan, 1196.0, 469.0], 'evalue': [1.000000e-09, 1.000000e-04, 1.100000e-07], 'model': ['attc_4'] * 3, 'pos_beg': [17825, 19080, 19618], 'pos_end': [17884, 19149, 19726], 'strand': [-1, -1, -1], 'type_elt': 'attC' }, columns=self.columns, index=['attc_001', 'attc_002', 'attc_003']) exp = exp.astype(dtype=self.dtype) pdt.assert_frame_equal(integron.attC, exp) exp = pd.DataFrame(columns=self.columns) exp = exp.astype(dtype=self.dtype) pdt.assert_frame_equal(integron.promoter, exp) pdt.assert_frame_equal(integron.attI, exp) pdt.assert_frame_equal(integron.proteins, exp)
def test_find_integron_attC_is_df(self): replicon_name = 'acba.007.p01.13' replicon_id = 'ACBA.007.P01_13' replicon_path = self.find_data( os.path.join('Replicons', replicon_name + '.fst')) prot_file = self.find_data( os.path.join('Proteins', replicon_id + '.prt')) topologies = Topology('lin') with FastaIterator(replicon_path) as sequences_db: sequences_db.topologies = topologies replicon = next(sequences_db) attc_file = self.find_data( os.path.join('Results_Integron_Finder_{}'.format(replicon_name), 'tmp_{}'.format(replicon.id), '{}_attc_table.res'.format(replicon.id))) intI_file = self.find_data( os.path.join('Results_Integron_Finder_{}'.format(replicon_name), 'tmp_{}'.format(replicon.id), '{}_intI.res'.format(replicon.id))) phageI_file = self.find_data( os.path.join('Results_Integron_Finder_{}'.format(replicon_name), 'tmp_{}'.format(replicon.id), '{}_phage_int.res'.format(replicon.id))) args = argparse.Namespace() args.no_proteins = True args.keep_palindromes = True args.attc_model = 'attc_4.cm' args.evalue_attc = 1.0 args.max_attc_size = 200 args.min_attc_size = 40 args.distance_threshold = 4000 args.calin_threshold = 2 args.local_max = False cfg = Config(args) cfg._prefix_data = os.path.join(os.path.dirname(__file__), 'data') len_model_attc = 47 # length in 'CLEN' (value for model attc_4.cm) attc_file = read_infernal(attc_file, replicon_name, len_model_attc, evalue=cfg.evalue_attc, size_max_attc=cfg.max_attc_size, size_min_attc=cfg.min_attc_size) prot_db = ProdigalDB(replicon, cfg, prot_file=prot_file) exp_msg = """In replicon {}, there are: - 0 complete integron(s) found with a total 0 attC site(s) - 1 CALIN element(s) found with a total of 3 attC site(s) - 0 In0 element(s) found with a total of 0 attC site""".format(replicon.id) with self.catch_log() as log: integrons = find_integron(replicon, prot_db, attc_file, intI_file, phageI_file, cfg) catch_msg = log.get_value().strip() self.assertEqual(catch_msg, exp_msg) self.assertEqual(len(integrons), 1) integron = integrons[0] self.assertEqual(integron.replicon.name, replicon_id) exp = pd.DataFrame( { 'annotation': ['attC'] * 3, 'distance_2attC': [np.nan, 1196.0, 469.0], 'evalue': [1.000000e-09, 1.000000e-04, 1.100000e-07], 'model': ['attc_4'] * 3, 'pos_beg': [17825, 19080, 19618], 'pos_end': [17884, 19149, 19726], 'strand': [-1, -1, -1], 'type_elt': 'attC' }, columns=self.columns, index=['attc_001', 'attc_002', 'attc_003']) pdt.assert_frame_equal(integron.attC, exp) exp = pd.DataFrame(columns=self.columns) exp = exp.astype(dtype=self.dtype) pdt.assert_frame_equal(integron.integrase, exp) pdt.assert_frame_equal(integron.promoter, exp) pdt.assert_frame_equal(integron.attI, exp) pdt.assert_frame_equal(integron.proteins, exp)
def find_integron_in_one_replicon(replicon, config): """ scan replicon for integron. * presence of integrase * presence of attC sites * presence of promoters and attI sites depending on the configuration * perform functional annotation produce a file containing presence of putative integrons depending on configuration * produce genbank file with replicon and annotations with integrons * produce schema of replicon with integrons (in pdf) :param replicon: the replicon to analyse. :type replicon: a :class:`Bio.SeqRecord` object. :param config: The configuration :type config: a :class:`integron_finder.config.Config` object. :returns: the path to the integron file (<replicon_id>.integrons) and the summary file (<replicon_id.summary>). if there is no integron the summary file is None :rtype: tuple (str integron_file, str summary_file) or (str integron_file, None) """ result_tmp_dir = config.tmp_dir(replicon.id) try: os.mkdir(result_tmp_dir) except OSError: pass tmp_replicon_path = os.path.join(result_tmp_dir, replicon.id + '.fst') SeqIO.write(replicon, tmp_replicon_path, "fasta") # create attr path # used to generate protein file with prodigal replicon.path = tmp_replicon_path # func_annot_path is the canonical path for Functional_annotation # path_func_annot is the path provide on the command line if config.func_annot and not config.no_proteins and not config.path_func_annot: if os.path.exists('bank_hmm'): fa_hmm = scan_hmm_bank('bank_hmm') elif os.path.exists(config.func_annot_path): fa_hmm = scan_hmm_bank(config.func_annot_path) else: raise IntegronError( "the dir '{}' neither 'bank_hmm' exists, specify the location of hmm " "profile with --path-func-annot option".format( config.func_annot_path)) is_func_annot = True elif config.path_func_annot and config.no_proteins is False: fa_hmm = scan_hmm_bank(config.path_func_annot) is_func_annot = True else: is_func_annot = False if is_func_annot and not fa_hmm: _log.warning( "No hmm profiles for functional annotation detected, skip functional annotation step." ) if config.gembase_path: protein_db = GembaseDB(replicon, config, gembase_path=config.gembase_path) elif config.gembase: protein_db = GembaseDB(replicon, config) else: protein_db = ProdigalDB(replicon, config) ################## # Default search # ################## intI_file = os.path.join(result_tmp_dir, replicon.id + "_intI.res") phageI_file = os.path.join(result_tmp_dir, replicon.id + "_phage_int.res") attC_default_file = os.path.join(result_tmp_dir, replicon.id + "_attc_table.res") try: if not config.no_proteins: if not os.path.isfile(intI_file) or not os.path.isfile( phageI_file): find_integrase(replicon.id, protein_db.protfile, result_tmp_dir, config) _log.info("Starting Default search ... :") if not os.path.isfile(attC_default_file): # find attc with cmsearch find_attc(tmp_replicon_path, replicon.name, config.cmsearch, result_tmp_dir, config.model_attc_path, incE=config.evalue_attc, cpu=config.cpu) _log.info("Default search done... : ") integrons = find_integron(replicon, protein_db, attC_default_file, intI_file, phageI_file, config) ######################### # Search with local_max # ######################### if config.local_max: _log.info("Starting search with local_max...:") if not os.path.isfile( os.path.join(result_tmp_dir, "integron_max.pickle")): circular = True if replicon.topology == 'circ' else False integron_max = find_attc_max( integrons, replicon, config.distance_threshold, config.model_attc_path, max_attc_size=config.max_attc_size, min_attc_size=config.min_attc_size, circular=circular, out_dir=result_tmp_dir, cpu=config.cpu, evalue_attc=config.evalue_attc) integron_max.to_pickle( os.path.join(result_tmp_dir, "integron_max.pickle")) _log.info("Search with local_max done... :") else: integron_max = pd.read_pickle( os.path.join(result_tmp_dir, "integron_max.pickle")) integron_max = integron_max[ (integron_max.evalue < config.evalue_attc) & (abs(integron_max.pos_end - integron_max.pos_beg) < config.max_attc_size) & (config.min_attc_size < abs(integron_max.pos_end - integron_max.pos_beg))] _log.info( "Search with local_max was already done, continue... :") integrons = find_integron(replicon, protein_db, integron_max, intI_file, phageI_file, config) ########################## # Add promoters and attI # ########################## for integron in integrons: integron_type = integron.type() if integron_type != "In0": # complete & CALIN if not config.no_proteins: _log.info("Adding proteins ... :") integron.add_proteins(protein_db) if config.promoter_attI: _log.info("Adding promoters and attI ... :") if integron_type == "complete": integron.add_promoter() integron.add_attI() elif integron_type == "In0": integron.add_attI() integron.add_promoter() ######################### # Functional annotation # ######################### if is_func_annot and fa_hmm: _log.info("Starting functional annotation ...:") func_annot(integrons, replicon, protein_db, fa_hmm, config, result_tmp_dir) ####################### # Writing out results # ####################### _log.info("Writing out results for replicon {}".format(replicon.id)) if config.pdf: for j, integron in enumerate(integrons, 1): if integron.type() == "complete": integron.draw_integron(file=os.path.join( config.result_dir, "{}_{}.pdf".format(replicon.id, j))) base_outfile = os.path.join(config.result_dir, replicon.id) integron_file = base_outfile + ".integrons" _log.debug("Writing integron_file {}".format(integron_file)) if integrons: integrons_report = results.integrons_report(integrons) integrons_report.to_csv(integron_file, sep="\t", index=False, na_rep="NA") summary = results.summary(integrons_report) summary_file = base_outfile + ".summary" summary.to_csv(summary_file, sep="\t", na_rep="NA", index=False, columns=[ 'ID_replicon', 'ID_integron', 'complete', 'In0', 'CALIN' ]) if config.gbk: add_feature(replicon, integrons_report, protein_db, config.distance_threshold) SeqIO.write( replicon, os.path.join(config.result_dir, replicon.id + ".gbk"), "genbank") else: with open(integron_file, "w") as out_f: out_f.write("# No Integron found\n") summary_file = None except integron_finder.EmptyFileError as err: _log.warning('############ Skip replicon {} ############'.format( replicon.name)) integron_file = '' summary_file = '' ######################### # clean temporary files # ######################### if not config.keep_tmp: try: shutil.rmtree(result_tmp_dir) except Exception as err: _log.warning("Cannot remove temporary results : '{} : {}'".format( result_tmp_dir, str(err))) return integron_file, summary_file