def test_identity(): x = ad.Variable(name='x') y = ad.Variable(name='y') z = x / y + x / 2. + 4 z_grad_x, z_grad_y = ad.gradients(z, [x, y]) executor = ad.Executor([z, z_grad_x, z_grad_y]) x_val = 2 * np.ones(1) y_val = 3 * np.ones(1) z_val, z_grad_x, z_grad_y = executor.run(feed_shapes={x: x_val, y: y_val}) print(z_val, z_grad_x, z_grad_y)
def test_softmax(): x2_pred = ad.Variable(name='x2_pred') x2_actu = ad.Variable(name='x2_actu') y = th.nn.softmax_cross_entropy_with_logits(x2_pred, x2_actu) x2_pred_grad, x2_actu_grad = ad.gradients(y, [x2_pred, x2_actu]) x2_pred_val = np.array([[0.8, 0.01, 0.5], [0.8, 0.01, 0.5]]) x2_actu_val = np.array([[1.0, 1.0, 0], [1.0, 1.0, 0]]) executor = ad.Executor([y, x2_pred_grad, x2_actu_grad]) y_val, x2_pred_grad_val, x2_actu_grad_val = executor.run( feed_shapes={ x2_pred: x2_pred_val, x2_actu: x2_actu_val })
def test_broadcast_to(): x2 = ad.Variable(name='x2') x3 = ad.Variable(name='x3') y = ad.broadcast_to(x2, x3) grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = np.array([[1, 2, 3]]) x3_val = np.zeros((3, 3)) y_val, grad_x2_val, grad_x3_val = executor.run(feed_shapes={ x2: x2_val, x3: x3_val }) # asserts assert isinstance(y, ad.Node) assert np.array_equal(y_val, np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])) assert np.array_equal(grad_x2_val, np.array([3, 3, 3]))
def test_reducesum(): x2 = ad.Variable(name='x2') y = ad.reduce_sum(x2) grad_x2, = ad.gradients(y, [x2]) executor = ad.Executor([y, grad_x2]) x2_val = np.array([[1, 2, 3], [4, 5, 6]]) y_val, grad_x2_val = executor.run(feed_shapes={x2: x2_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, np.array([5, 7, 9])) assert np.array_equal(grad_x2_val, np.array([1, 1, 1]))
def test_sigmoid(): x = ad.Variable(name='x') y = th.nn.sigmoid(x) grad_x, = ad.gradients(y, [x]) executor = ad.Executor([y, grad_x]) x_val = np.array([-100, 0, 100]) y_val, grad_x_val = executor.run(feed_shapes={x: x_val}) print(y_val, grad_x_val)
def test_relu(): x = ad.Variable(name='x') y = th.nn.relu(x) grad_x2, = ad.gradients(y, [x]) executor = ad.Executor([y, grad_x2]) x_val = np.array([[-1, 2, 3], [1, -2, 0]]) y_val, grad_x2_val = executor.run(feed_shapes={x: x_val}) expected_y_val = np.array([[0, 2, 3], [1, 0, 0]]) expected_x2_grad = np.array([[0, 1, 1], [1, 0, 0]]) assert np.array_equal(y_val, expected_y_val) assert np.array_equal(grad_x2_val, expected_x2_grad)
def test_matmul(): x = ad.Variable(name='x') y = ad.Variable(name='y') z = ad.matmul(x, y) z_grad_x, z_grad_y = ad.gradients(z, [x, y]) executor = ad.Executor([z, z_grad_x, z_grad_y]) x_val = np.array([[1, 2], [3, 4], [5, 6]]) # 3x2 y_val = np.array([[7, 8, 9], [10, 11, 12]]) # 2x3 z_val, z_grad_x, z_grad_y = executor.run(feed_shapes={x: x_val, y: y_val}) expected_yval = np.matmul(x_val, y_val) expected_grad_x_val = np.matmul(np.ones_like(expected_yval), np.transpose(y_val)) expected_grad_y_val = np.matmul(x_val.T, np.ones_like(expected_yval)) assert np.array_equal(expected_yval, z_val) assert np.array_equal(expected_grad_x_val, z_grad_x) assert np.array_equal(expected_grad_y_val, z_grad_y)
start_time = datetime.datetime.now() use_gpu = True # use_gpu = False data = th.datasets.MNIST(batch_size=128) batch_generator = data.train_batch_generator() input_size = data.num_features() hid_1_size = 256 hid_2_size = 100 output_size = 10 lr = 1e-3 X = ad.Variable(name="X") y = ad.Variable(name='y') loss, W1, b1, W2, b2, W3, b3, logit = build_graph(X, y, input_size, hid_1_size, hid_2_size, output_size) optimizer = th.optim.SGD(loss, params=[W1, b1, W2, b2, W3, b3], lr=lr, use_gpu=use_gpu) for i in range(10000): X_batch, y_batch = next(batch_generator) loss_now = optimizer.step(feed_dict={X: X_batch, y: y_batch}) if i <= 10 or (i <= 100 and i % 10 == 0) or (i <= 1000 and i % 100 == 0) or (i <= 10000 and i % 500 == 0): fmt_str = 'iter: {0:>5d} cost: {1:>8.5f}' print(fmt_str.format(i, loss_now[0])) val_acc = measure_accuracy(logit, data.validation(), use_gpu=use_gpu) print('Validation accuracy: {:>.2f}'.format(val_acc))