예제 #1
0
    def test_partly_pretrained_train(self):
        path_to_pretrained_json = os.path.join(get_project_root(),
                                               'res_experiments',
                                               'hps_common_mlp.json')
        path_to_pretrained_model = os.path.join(get_project_root(),
                                                'res_experiments',
                                                'trained_models', 'test.pt')
        hps_pretrained = HyperParams.from_file(
            path_to_json=path_to_pretrained_json)
        model_common = Model(hps_pretrained)
        model_common.load_model(path_to_pretrained_model)
        path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                    'hps_partly_independent_mlp.json')
        hps = HyperParams.from_file(path_to_json=path_to_json)
        model_part = Model(hps)
        model_part.load_pretrained_bottom(path_to_pretrained_model,
                                          path_to_pretrained_json)
        filename = '../data/small_parameters_base.fits'
        history = model_part.train(
            filename=filename,
            path_to_save='../res_experiments/trained_models/partly_test.pt',
            pretrained_bottom=True,
            logdir='../res_experiments/')
        par_0_com = list(zip(*model_common.net.bottom.mlp.named_parameters())
                         )[1][0].detach().numpy()
        par_0_par = list(zip(*model_part.net.bottom.mlp.named_parameters())
                         )[1][0].detach().numpy()

        assert par_0_com == pytest.approx(par_0_par)
예제 #2
0
    def test_partly_pretrained_init(self):
        path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                    'hps_common_mlp.json')
        path_to_model = os.path.join(get_project_root(), 'res_experiments',
                                     'trained_models', 'test.pt')

        hps = HyperParams.from_file(path_to_json=path_to_json)
        model_common = Model(hps)
        model_common.load_model(path_to_model)
        pretrained_dict = model_common.net.state_dict()
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items() if 'bottom' in k
        }
        path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                    'hps_partly_independent_mlp.json')
        hps = HyperParams.from_file(path_to_json=path_to_json)
        model_part = Model(hps)
        model_dict = model_part.net.state_dict()
        model_dict.update(pretrained_dict)
        model_part.net.load_state_dict(model_dict)
        par_0_part = list(
            zip(*model_part.net.bottom.mlp.named_parameters()))[1][0]
        par_0_com = list(
            zip(*model_common.net.bottom.mlp.named_parameters()))[1][0]
예제 #3
0
    def test_partly_pretrained_fit_step(self):
        path_to_pretrained_json = os.path.join(get_project_root(),
                                               'res_experiments',
                                               'hps_common_mlp.json')
        path_to_pretrained_model = os.path.join(get_project_root(),
                                                'res_experiments',
                                                'trained_models', 'test.pt')
        hps_pretrained = HyperParams.from_file(
            path_to_json=path_to_pretrained_json)
        model_common = Model(hps_pretrained)
        model_common.load_model(path_to_pretrained_model)
        path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                    'hps_partly_independent_mlp.json')
        hps = HyperParams.from_file(path_to_json=path_to_json)
        model_part = Model(hps)
        model_part.load_pretrained_bottom(path_to_pretrained_model,
                                          path_to_pretrained_json)
        train_loader, val_loader = model_part.make_loader(
            filename='../data/small_parameters_base.fits')
        loss = model_part.fit_step(train_loader, pretrained_bottom=True)
        par_0_com = list(zip(*model_common.net.bottom.mlp.named_parameters())
                         )[1][0].detach().numpy()
        par_0_par = list(zip(*model_part.net.bottom.mlp.named_parameters())
                         )[1][0].detach().numpy()

        assert par_0_com == pytest.approx(par_0_par)
예제 #4
0
 def test_resnet_train(self):
     path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                 'hps_base_resnet.json')
     hps = HyperParams.from_file(path_to_json=path_to_json)
     hps.trainset = 5
     model = Model(hps)
     history = model.train()
     assert history[0][0] > 0
예제 #5
0
 def test_model_conv_train(self):
     path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                 'hps_base_conv.json')
     hps = HyperParams.from_file(path_to_json=path_to_json)
     model = Model(hps)
     x = model.make_loader()
     x_ = next(iter(x))
     history = model.train()
     assert history[0][0] > 0
예제 #6
0
 def test_model_partly_ind_train(self):
     path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                 'hps_partly_independent_mlp.json')
     hps = HyperParams.from_file(path_to_json=path_to_json)
     model = Model(hps)
     filename = '../data/small_parameters_base.fits'
     history = model.train(
         filename=filename,
         path_to_save='../res_experiments/trained_models/partly_test.pt',
         logdir='../res_experiments/')
     # model.save_model(path_to_save='../res_experiments/trained_models/test.pt')
     assert True
예제 #7
0
 def test_load_pretrained_bottom(self):
     path_to_pretrained_json = os.path.join(get_project_root(),
                                            'res_experiments',
                                            'hps_common_mlp.json')
     path_to_pretrained_model = os.path.join(get_project_root(),
                                             'res_experiments',
                                             'trained_models', 'test.pt')
     hps_pretrained = HyperParams.from_file(
         path_to_json=path_to_pretrained_json)
     model_common = Model(hps_pretrained)
     model_common.load_model(path_to_pretrained_model)
     path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                 'hps_partly_independent_mlp.json')
     hps = HyperParams.from_file(path_to_json=path_to_json)
     model_part = Model(hps)
     model_part.load_pretrained_bottom(path_to_pretrained_model,
                                       path_to_pretrained_json)
     par_0_part = list(
         zip(*model_part.net.bottom.mlp.named_parameters()))[1][0]
     par_0_com = list(
         zip(*model_common.net.bottom.mlp.named_parameters()))[1][0]
     assert True
예제 #8
0
 def test_common_model_train(self, common_mlp_rescale_hps):
     path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                 'hps_common_mlp.json')
     hps = HyperParams.from_file(path_to_json=path_to_json)
     model = Model(hps)
     filename = '../data/small_parameters_base.fits'
     history = model.train(
         filename=filename,
         pregen=True,
         path_to_save='../res_experiments/trained_models/test.pt',
         logdir='../res_experiments/')
     model.save_model(path='../res_experiments/trained_models/common.pt')
     assert True
예제 #9
0
    def test_predict_one_pixel_conv(self):
        path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                    'hps_base_conv.json')
        hps = HyperParams.from_file(path_to_json=path_to_json)
        hps.trainset = 1
        hps.valset = 1
        hps.n_epochs = 1
        hps.batch_size = 1
        model = Model(hps)
        history = model.train()

        filename = Path(os.getcwd()).parent / 'data' / "20170905_030404.fits"
        ref = fits.open(filename)
        predicted, y, x, _ = model.predict_one_pixel(ref, 3, 4)
        assert predicted[0].shape == torch.Size([1, 3])
예제 #10
0
    def test_predict_full_image_conv(self):
        path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                    'hps_base_conv.json')
        hps = HyperParams.from_file(path_to_json=path_to_json)
        hps.trainset = 1
        hps.valset = 1
        hps.n_epochs = 1
        hps.batch_size = 1
        model = Model(hps)
        history = model.train()

        filename = Path(os.getcwd()).parent / 'data' / "20170905_030404.fits"
        ref = fits.open(filename)
        predicted, params, lines, cont = model.predict_full_image(ref,
                                                                  cnn=True)
        assert predicted.shape == (ref[1].data.shape + (3, ))
예제 #11
0
 def test_model_ind_train(self):
     path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                 'hps_independent_mlp.json')
     hps = HyperParams.from_file(path_to_json=path_to_json)
     model = Model(hps)
     filename = '../data/small_parameters_base.fits'
     history = model.train(
         filename=filename,
         path_to_save='../res_experiments/trained_models/test.pt',
         logdir='../res_experiments/')
     # model.save_model(path_to_save='../res_experiments/trained_models/test.pt')
     # list(zip(*self.net.top.task_layers[0].named_parameters()))[1][0].grad
     params_groups_0 = list(
         zip(*model.net.top.task_layers[0].named_parameters()))
     params_groups_3 = list(
         zip(*model.net.top.task_layers[3].named_parameters()))
     assert True
예제 #12
0
 def base_mlp_standard_hps(self):
     path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                 'hps_base_mlp_standard.json')
     hps = HyperParams.from_file(path_to_json=path_to_json)
     return hps
예제 #13
0
 def common_mlp_rescale_hps(self):
     path_to_json = os.path.join(get_project_root(), 'res_experiments',
                                 'hps_common_mlp.json')
     hps = HyperParams.from_file(path_to_json=path_to_json)
     return hps