def test_invert(self): tf = T.RandomApply( transforms=[T.Identity(), T.ToTensor()], p=1, ) img_tensor = tf(self.img_pil) self.assertIsInstance(img_tensor, torch.Tensor) self.assertIsInstance(tf.invert(img_tensor), Image.Image)
def test_replay(self): tf = T.Compose([ T.RandomCrop(self.crop_size), T.RandomVerticalFlip(), T.RandomHorizontalFlip(), T.ToTensor(), ]) img_tf1 = tf.replay(self.img_pil) img_tf2 = tf.replay(self.img_pil) self.assertTrue(torch.allclose(img_tf1, img_tf2))
def setUp(self) -> None: self.img_size = (256, 320) self.h, self.w = self.img_size self.crop_size = (64, 128) self.img_tensor = torch.randn((1, ) + self.img_size).clamp(0, 1) self.img_pil = T.ToPILImage()(self.img_tensor) self.img_tensor = T.ToTensor()(self.img_pil) self.n = random.randint(0, 1e9)
def __randaug_mnist(self, img_pil, to_tensor, norm): return T.Compose([ T.RandomAffine( degrees=10, translate=(0.17, 0.17), scale=(0.85, 1.05), shear=(-10, 10, -10, 10), resample=PIL.Image.BILINEAR, ), T.ColorJitter(0.5, 0.5, 0.5, 0.25), T.TransformIf(T.ToTensor(), to_tensor), T.TransformIf(T.Normalize(mean=(0.1307, ), std=(0.3081, )), to_tensor and norm), ])(img_pil)
def test_track(self): tf = T.Compose([ T.ToPILImage(), T.RandomVerticalFlip(p=0.5), # the crop will include the center pixels T.RandomCrop(size=tuple( int(0.8 * self.img_size[i]) for i in range(2))), T.RandomHorizontalFlip(p=0.5), T.ToTensor(), ]) imgs_tf = [tf.track(self.img_tensor) for _ in range(10)] for i, img_tf in enumerate(imgs_tf): n = min(self.img_size) // 10 center_pixels = (0, ) + tuple( slice(self.img_size[i] // 2 - n, self.img_size[i] // 2 + n) for i in range(2)) self.assertTrue( torch.allclose(tf[i](img_tf)[center_pixels], self.img_tensor[center_pixels]))
def __randaug_imagenet(self, img_pil, to_tensor, norm): # TODO: turn this code less cryptic... policy = [('FlipLR', 0.5, random.randint(1, 9)), ('FlipUD', 0.5, random.randint(1, 9)), ('Rotate', 0.5, random.randint(1, 9))] \ + random.choice(self._all_policies) img_shape = img_pil.size[::-1] + (3, ) for xform in policy: assert len(xform) == 3 name, probability, level = xform xform_fn = NAME_TO_TRANSFORM[name].pil_transformer( probability, level, img_shape) img_pil = xform_fn(img_pil) return T.Compose([ T.Lambda(lambda img: img.convert('RGB')), T.TransformIf(T.ToTensor(), to_tensor), T.TransformIf( T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), to_tensor and norm), ])(img_pil)
def test_invert(self): tf = T.RandomChoice([T.ToTensor()] * 10) self.assertIsInstance(tf(self.img_pil), torch.Tensor) self.assertIsInstance(tf.inverse(), T.ToPILImage)
def test_invert(self): tf = T.TransformIf(transform=T.ToTensor(), condition=True) self.assertIsInstance(tf.inverse(), T.ToPILImage)
def pil_unwrap2(img_pil, mean_std=None): img = T.ToTensor()(img_pil.convert('RGB')) if mean_std is not None: img = T.Normalize(*mean_std)(img) return img
def main(**kwargs): ######################## # [DATA] some datasets # ######################## dataset_name = kwargs['dataset_name'] tf = T.Compose([ T.ToTensor(), T.TransformIf(T.Normalize(mean=[0.13], std=[0.31]), dataset_name == 'mnist'), T.TransformIf(T.Normalize(mean=[0.5] * 3, std=[0.5] * 3), dataset_name == 'cifar10'), ]) dataset, tst_dataset = { 'mnist': lambda: ( MNIST(root='/data/', train=True, transform=tf, download=True), MNIST(root='/data/', train=False, transform=tf, download=True), ), 'cifar10': lambda: ( CIFAR10(root='/data/', train=True, transform=tf, download=True), CIFAR10(root='/data/', train=False, transform=tf, download=True), ) }[dataset_name]() tng_dataset, val_dataset = split(dataset, percentage=kwargs['val_percentage']) sampler = RandomSampler(tng_dataset, num_samples=len(val_dataset), replacement=False) tng_dataloader = DataLoader(dataset=tng_dataset, batch_size=kwargs['tng_batch_size'], sampler=sampler, num_workers=4) val_dataloader = DataLoader(dataset=val_dataset, batch_size=kwargs['val_batch_size'], shuffle=False, num_workers=4) tst_dataloader = DataLoader(dataset=tst_dataset, batch_size=kwargs['val_batch_size'], shuffle=False, num_workers=4) ########################### # [MODEL] a pytorch model # ########################### sample_input, _ = dataset[0] net = SimpLeNet( input_size=sample_input.size(), n_classes=10, ) ######################################## # [STRATEGY] it describes the training # ######################################## exp_name = f'{net.__class__.__name__.lower()}/{dataset_name}' kwargs['log_dir'] = Path(kwargs['log_dir']) / exp_name classifier = ClassifierStrategy(net=net, **kwargs) ################################## # [EXECUTOR] it handles the rest # ################################## executor = Executor( tng_dataloader=tng_dataloader, val_dataloader=val_dataloader, tst_dataloader=tst_dataloader, exp_name=exp_name, **kwargs, ) executor.train_test(strategy=classifier, **kwargs)