예제 #1
0
def create_gaussian_prior_for(parameter, mean, std):
	"""
	Use for informed variables.
	The Gaussian prior weights by a Gaussian in the parameter. If you 
	would like the logarithm of the parameter to be weighted by
	a Gaussian, create a ancillary parameter (see create_jeffreys_prior_for).
	
	:param parameter: Parameter to create a prior for. E.g. xspowerlaw.mypowerlaw.PhoIndex

	"""
	import invgauss
	lo = parameter.min
	hi = parameter.max
	f = invgauss.get_invgauss_func(mean, std)
	return lambda x: min(lo, max(hi, f(x)))
예제 #2
0
파일: priors.py 프로젝트: afcarl/BXA
def create_gaussian_prior_for(parameter, mean, std):
    """
	Use for informed variables.
	The Gaussian prior weights by a Gaussian in the parameter. If you 
	would like the logarithm of the parameter to be weighted by
	a Gaussian, create a ancillary parameter (see create_jeffreys_prior_for).
	
	:param parameter: Parameter to create a prior for. E.g. xspowerlaw.mypowerlaw.PhoIndex

	"""
    import invgauss
    lo = parameter.min
    hi = parameter.max
    f = invgauss.get_invgauss_func(mean, std)
    return lambda x: max(lo, min(hi, f(x)))
예제 #3
0
# creating ancillary parameters for logarithmic treatment
print 'creating prior functions...'
from sherpa.models.parameter import Parameter
srclevel = Parameter('src', 'level', numpy.log10(src.norm.val), -8, -1, -8, -1)
srcnh = Parameter('src', 'nh', numpy.log10(abso.nH.val) + 22, 19, 24, 19, 24)
galnh = Parameter('gal', 'nh',
                  numpy.log10(galabso.nH.val) + 22, 19, 24, 19, 24)

src.norm = 10**srclevel
abso.nH = 10**(srcnh - 22)
galabso.nH = 10**(galnh - 22)

# example of a custom prior
import invgauss
f = invgauss.get_invgauss_func(numpy.log10(props['nhgal']), 0.15)


def limited_19_24(x):
    v = f(x)
    if v <= 19:
        v = 19
    if v >= 24:
        v = 24
    return v


priors = []
parameters = [srclevel, src.PhoIndex, srcnh, galnh]

import bxa.sherpa as bxa
galabso.nH.val = props['nhgal'] / 1e22

# creating ancillary parameters for logarithmic treatment
print('creating prior functions...')
from sherpa.models.parameter import Parameter
srclevel = Parameter('src', 'level', numpy.log10(src.norm.val), -8, -1, -8, -1)
srcnh = Parameter('src', 'nh', numpy.log10(abso.nH.val)+22, 19, 24, 19, 24)
galnh = Parameter('gal', 'nh', numpy.log10(galabso.nH.val)+22, 19, 24, 19, 24)

src.norm = 10**srclevel
abso.nH = 10**(srcnh - 22)
galabso.nH = 10**(galnh - 22)

# example of a custom prior
import invgauss
f = invgauss.get_invgauss_func(numpy.log10(props['nhgal']), 0.15)

def limited_19_24(x):
	v = f(x)
	if v <= 19:
		v = 19
	if v >= 24:
		v = 24
	return v

priors = []
parameters = [srclevel, src.PhoIndex, srcnh, galnh]

import bxa.sherpa as bxa
priors += [bxa.create_uniform_prior_for(srclevel)]
priors += [bxa.create_uniform_prior_for(src.PhoIndex)]