import sys import numpy as np import matplotlib.pyplot as plt from scipy import stats from io_helper import open_write, open_read def usage(): print >> sys.stderr, "{} <source.npy> [output.npy]" exit(1) if __name__ == '__main__': if len(sys.argv) < 2: usage() src = sys.argv[1] out = None if len(sys.argv) == 3: out = sys.argv[2] data = np.load(open_read(src)) if data.min() <= 0: data += data.min() + 1 boxcox, l = stats.boxcox(data) print >> sys.stderr, "Lambda: {}".format(l) if out is not None: np.save(open_write(out), boxcox)
query = sys.argv[1] out = sys.argv[2] client = InfluxDBClient('localhost', 8086, 'root', 'root', '') result = client.query(query) for rs in result: cols = [k for k in rs[0].keys() if k != 'time'] cols_count = len(cols) data = np.zeros((len(rs), cols_count)) r = 0 for row in rs: c = 0 for col in cols: data[r,c] = row[col] c += 1 r += 1 if len(data.shape) == 2 and data.shape[1] == 1: data = data.reshape(data.shape[0]) np.save(open_write(out), data)
# using the Box-Cox method. # https://en.wikipedia.org/wiki/Power_transform import sys import numpy as np import matplotlib.pyplot as plt from scipy import stats from io_helper import open_write,open_read def usage(): print >> sys.stderr, "{} <source.npy> [output.npy]" exit(1) if __name__ == '__main__': if len(sys.argv) < 2: usage() src = sys.argv[1] out = None if len(sys.argv) == 3: out = sys.argv[2] data = np.load(open_read(src)) if data.min() <= 0: data += data.min() + 1 boxcox, l = stats.boxcox(data) print >> sys.stderr, "Lambda: {}".format(l) if out is not None: np.save(open_write(out), boxcox)
def usage(): print >> sys.stderr, "{} <query> <output>".format(__file__) exit(1) if __name__ == '__main__': if len(sys.argv) != 3: usage() query = sys.argv[1] out = sys.argv[2] client = InfluxDBClient('localhost', 8086, 'root', 'root', '') result = client.query(query) for rs in result: cols = [k for k in rs[0].keys() if k != 'time'] cols_count = len(cols) data = np.zeros((len(rs), cols_count)) r = 0 for row in rs: c = 0 for col in cols: data[r, c] = row[col] c += 1 r += 1 if len(data.shape) == 2 and data.shape[1] == 1: data = data.reshape(data.shape[0]) np.save(open_write(out), data)