def __init__(self, word_embedding, synonyms_filepath=io_utils.get_synonyms_filepath(), train_indices=io_utils.train_indices(), test_indices=io_utils.test_indices(), words_per_news=25, bag_size=1, bags_per_minibatch=50, callback=None): super(CNNModel, self).__init__(io=io_utils.NetworkIOProvider(), word_embedding=word_embedding, synonyms_filepath=synonyms_filepath, train_indices=train_indices, test_indices=test_indices, bag_size=bag_size, words_per_news=words_per_news, bags_per_minibatch=bags_per_minibatch, callback=callback)
def get_data_indices(self, data_type): if data_type == DataType.Test: return io_utils.test_indices() if data_type == DataType.Train: return io_utils.train_indices()
news_filepath = root + "art{}.txt".format(n) opin_filepath = root + "art{}.opin.txt".format(n) neutral_filepath = root + "art{}.neut.txt".format(n) print neutral_filepath entities = EntityCollection.from_file(entity_filepath) news = News.from_file(news_filepath, entities) opinions = OpinionCollection.from_file(opin_filepath, io_utils.get_synonyms_filepath()) neutral_opins = make_neutrals(news, synonyms, opinions) neutral_opins.save(neutral_filepath) # # Test # root = io_utils.test_root() for n in io_utils.test_indices(): entity_filepath = path.join(root, "art{}.ann".format(n)) news_filepath = path.join(root, "art{}.txt".format(n)) neutral_filepath = path.join(root, "art{}.neut.txt".format(n)) print neutral_filepath entities = EntityCollection.from_file(entity_filepath) news = News.from_file(news_filepath, entities) neutral_opins = make_neutrals(news, synonyms) neutral_opins.save(neutral_filepath)
pcnn_filepath = path.join(output_root, '{}.csv'.format(pcnn_name)) cnn_callback = PandasLoggerCallback(epochs=config.Epochs, test_on_epochs=config.test_on_epochs, csv_filepath=cnn_filepath, model_name=cnn_name) pcnn_callback = PandasLoggerCallback(epochs=config.Epochs, test_on_epochs=config.test_on_epochs, csv_filepath=pcnn_filepath, model_name=pcnn_name) return [(CNNModel, cnn_callback), (PCNNModel, pcnn_callback)] if __name__ == "__main__": gpu_memory_fraction = 0.35 config = CNNConfig() models = compose_all_models(config) for _ in config.iterate_over_grid(): for tf_model, callback in models: eval_model(config=config, callback=callback, model_type=tf_model, train_indices=io_utils.train_indices(), test_indices=io_utils.test_indices(), gpu_memory_fraction=gpu_memory_fraction)