예제 #1
0
eeio1 = useeiopy.assemble("USEEIO2012_scen1")

eeio2 = useeiopy.assemble("USEEIO2012_scen2")

eeio3 = useeiopy.assemble("USEEIO2012_scen3")

drc = eeio0.drc_matrix.copy()

demand2012_file = 'C:/Users/qread/Dropbox/projects/foodwaste/Code/USEEIO-master/useeiopy/Model Builds/USEEIO2012/USEEIO2012_FinalDemand.csv'

# Results across all sectors of the economy.

demand_dict2012 = dd.demandtodict('2012_US_Consumption', demand2012_file)
demand_dict2012_corrected = correct_demand_names(demand_dict2012, drc)

result0 = iomb.calculate(eeio0, demand_dict2012_corrected)
result1 = iomb.calculate(eeio1, demand_dict2012_corrected)
result2 = iomb.calculate(eeio2, demand_dict2012_corrected)
result3 = iomb.calculate(eeio3, demand_dict2012_corrected)

result0.lcia_total
result1.lcia_total
result2.lcia_total
result3.lcia_total

all_results = pandas.concat([result0.lcia_total, result1.lcia_total, result2.lcia_total, result3.lcia_total], axis = 1)
all_results.columns = ['result0','result1','result2','result3']

# Write the output.
all_results.to_csv('Q:/IO_output/structural_scenarios_2012.csv') # Remote version
all_results.to_csv('C:/Users/qread/Dropbox/projects/foodwaste/Data/structural_scenarios_2012.csv') # Local version
예제 #2
0
def eeio_lcia_contributions(model_path, demand_values, demand_codes):
    eeio = useeiopy.assemble(model_path)
    demand_dict = dict(zip(demand_codes, demand_values))
    result = iomb.calculate(eeio, demand_dict)
    lcia_contr = result.lcia_contributions
    return lcia_contr
예제 #3
0
파일: run_eeio_2012.py 프로젝트: qdread/fwe
def get_impacts(scenario_name, scenario_csv):
    demand_dict = dd.demandtodict(scenario_name, scenario_csv)
    demand_dict_corrected = correct_demand_names(demand_dict, drc)
    result = iomb.calculate(useeio1pt1, demand_dict_corrected)
    return (result.lcia_total)
예제 #4
0
파일: indiv_sectors.py 프로젝트: qdread/fwe
    # Create dictionary to map the old and new name
    key_mapping = dict(zip(key_demand, drc_index_sorted))

    # Correct names in original dictionary
    dict_corrected = dict(
        (key_mapping[key], value) for (key, value) in demand_dict.items())
    return (dict_corrected)


# Get names of the sectors
sector_names = drc.index.values.tolist()

# Get dairy code
dairy_code = [x for x in sector_names if re.search('dairies', x)]
dairy_result = iomb.calculate(useeio1pt1, {dairy_code[0]: 1})

# Get inputs and outputs of dairy sector
dairy_inputs = drc.loc[:, dairy_code[0]]
dairy_outputs = drc.loc[dairy_code[0], :]

# Milk products that use output from dairies
dairyproducts_code = [x for x in sector_names if re.search('^3115', x)]
cheese_result = iomb.calculate(useeio1pt1, {dairyproducts_code[0]: 1})

# Inputs and outputs of cheese sector
cheese_inputs = drc.loc[:, dairyproducts_code[
    0]]  # 33 cents of dairy output is required to produce 1 dollar of cheese.
cheese_outputs = drc.loc[dairyproducts_code[
    0], :]  # 1/2 cent of cheese output is required to produce 1 dollar of restaurant value