def test_geometric_types(postgres): adapter = PostgresAdapter(postgres.url(), 'geometric_test') adapter.field_shapes = {'path': 5} adapter.field_names = {4: 'path2'} expected = np.array([((1.1, 2.2), [1, 2, 3], [1, 2, 3, 4], [3, 4, 1, 2], [(1, 2), (3, 4), (5, 6), (0, 0), (0, 0)], [(1.0, 2.0), (3.0, 4.0), (5.0, 6.0)], [1, 2, 3])], dtype=[(str('point'), 'f8', 2), (str('line'), 'f8', 3), (str('lseg'), 'f8', 4), (str('box'), 'f8', 4), (str('path2'), 'f8', (5, 2)), (str('polygon'), 'O'), (str('circle'), 'f8', 3)]) result = adapter[:] np.testing.assert_array_equal(expected, result) adapter.field_shapes = {'path2': 5} result = adapter[:] np.testing.assert_array_equal(expected, result) adapter.field_shapes = {4: 5} result = adapter[:] np.testing.assert_array_equal(expected, result)
def test_multipolygons(self): adapter = PostgresAdapter(self.postgresql.url(), query='select polygon2d, polygon3d, polygon4d from multipolygons') adapter.field_shapes = {'polygon3d': (2, 4, 5), 'polygon4d': (2, 3, 4)} result = adapter[:] expected = np.array([('MULTIPOLYGON (((0.000000 1.000000, 2.000000 3.000000, 4.000000 5.000000, 0.000000 1.000000), ' '(0.000000 1.000000, 2.000000 3.000000, 4.000000 5.000000, 0.000000 1.000000), ' '(0.000000 1.000000, 2.000000 3.000000, 4.000000 5.000000, 0.000000 1.000000)), ' '((0.000000 1.000000, 2.000000 3.000000, 4.000000 5.000000, 0.000000 1.000000), ' '(0.000000 1.000000, 2.000000 3.000000, 4.000000 5.000000, 0.000000 1.000000), ' '(0.000000 1.000000, 2.000000 3.000000, 4.000000 5.000000, 0.000000 1.000000)))', [[[[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 1, 2], [0, 0, 0]], [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 1, 2], [0, 0, 0]], [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 1, 2], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]], [[[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 1, 2], [0, 0, 0]], [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 1, 2], [0, 0, 0]], [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 1, 2], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]], [[[(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (0, 1, 2, 3)], [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (0, 1, 2, 3)], [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (0, 1, 2, 3)]], [[(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (0, 1, 2, 3)], [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (0, 1, 2, 3)], [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (0, 1, 2, 3)]]])], dtype=[('polygon2d', 'O'), ('polygon3d', 'f8', (2, 4, 5, 3)), ('polygon4d', 'f8', (2, 3, 4, 4))]) np.testing.assert_array_equal(expected, result)
def test_multilines(self): adapter = PostgresAdapter(self.postgresql.url(), query='select line2d, line3d, line4d from multilines') adapter.field_shapes = {'line3d': (2, 3), 'line4d': (2, 2)} result = adapter[:] expected = np.array([('MULTILINESTRING ((0.000000 1.000000, 2.000000 3.000000), ' '(4.000000 5.000000, 6.000000 7.000000))', [[[0, 1, 2], [3, 4, 5], [0, 0, 0]], [[6, 7, 8], [9, 10, 11], [12, 13, 14]]], [[(0, 1, 2, 3), (4, 5, 6, 7)], [(8, 9, 10, 11), (12, 13, 14, 15)]])], dtype=[('line2d', 'O'), ('line3d', 'f8', (2, 3, 3)), ('line4d', 'f8', (2, 2, 4))]) np.testing.assert_array_equal(expected, result)
def test_multipoints(self): adapter = PostgresAdapter(self.postgresql.url(), query='select point2d, point3d, point4d from multipoints') adapter.field_shapes = {'point2d': 1, 'point3d': 4} result = adapter[:] expected = np.array([([[0, 1]], [[0, 1, 2], [3, 4, 5], [0, 0, 0], [0, 0, 0]], 'MULTIPOINT ((0.000000 1.000000 2.000000 3.000000), ' '(4.000000 5.000000 6.000000 7.000000))')], dtype=[('point2d', 'f8', (1, 2)), ('point3d', 'f8', (4, 3)), ('point4d', 'O')]) np.testing.assert_array_equal(expected, result)
def test_lines(self): adapter = PostgresAdapter(self.postgresql.url(), query='select line2d, line3d, line4d from lines') adapter.field_shapes = {'line2d': 1, 'line3d': 3} result = adapter[:] expected = np.array([([[0.0, 1.0]], [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [0.0, 0.0, 0.0]], 'LINESTRING (0.000000 1.000000 2.000000 3.000000, ' '4.000000 5.000000 6.000000 7.000000)'), ([[0.0, 1.0]], [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], 'LINESTRING (0.000000 1.000000 2.000000 3.000000, ' '4.000000 5.000000 6.000000 7.000000)')], dtype=[('line2d', 'f8', (1,2)), ('line3d', 'f8', (3,3)), ('line4d', 'O')]) np.testing.assert_array_equal(expected, result)
def test_polygons(postgres): adapter = PostgresAdapter(postgres.url(), query='select polygon2d, polygon3d, polygon4d from polygons') adapter.field_shapes = {'polygon3d': (4, 5), 'polygon4d': (3, 4)} result = adapter[:] expected = np.array([('POLYGON ((0.000000 1.000000, 2.000000 3.000000, 4.000000 5.000000, 0.000000 1.000000), ' '(0.000000 1.000000, 2.000000 3.000000, 4.000000 5.000000, 0.000000 1.000000), ' '(0.000000 1.000000, 2.000000 3.000000, 4.000000 5.000000, 0.000000 1.000000))', [[[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 1, 2], [0, 0, 0]], [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 1, 2], [0, 0, 0]], [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 1, 2], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]], [[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [0, 1, 2, 3]], [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [0, 1, 2, 3]], [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [0, 1, 2, 3]]])], dtype=[('polygon2d', 'O'), ('polygon3d', 'f8', (4, 5, 3)), ('polygon4d', 'f8', (3, 4, 4))]) np.testing.assert_array_equal(expected, result)
def test_dataframe(postgres): adapter = PostgresAdapter(postgres.url(), table='ints_test', dataframe=True) expected = pd.DataFrame({'int2': np.array([np.iinfo(np.int16).min, 0, np.iinfo(np.int16).max], dtype='i2'), 'int4': np.array([np.iinfo(np.int32).min, 0, np.iinfo(np.int32).max], dtype='i4'), 'int8': np.array([np.iinfo(np.int64).min, 0, np.iinfo(np.int64).max], dtype='i8')}) result = adapter[:] np.testing.assert_array_equal(expected, result) adapter = PostgresAdapter(postgres.url(), 'casts_test', dataframe=True) expected = np.zeros((CASTS_TEST_NUM_RECORDS,), dtype=[(str('char'), str('O')), (str('int4'), str('i4')), (str('float8'), str('f8'))]) for i in range(CASTS_TEST_NUM_RECORDS): expected[i] = (str(i).ljust(10), i, float('{0}.{0}'.format(i))) expected = pd.DataFrame.from_records(expected, index=np.arange(CASTS_TEST_NUM_RECORDS, dtype='u8')) result = adapter[:] assert_frame_equal(expected, result) adapter = PostgresAdapter(postgres.url(), 'casts_test', dataframe=True, field_filter=['int4', 'float8']) adapter.field_types = ['i2', 'f4'] adapter.field_names = ['a', 'b'] expected = np.zeros((CASTS_TEST_NUM_RECORDS,), dtype=[(str('a'), str('i2')), (str('b'), str('f4'))]) for i in range(CASTS_TEST_NUM_RECORDS): expected[i] = (i, float('{0}.{0}'.format(i))) expected = pd.DataFrame.from_records(expected, index=np.arange(CASTS_TEST_NUM_RECORDS, dtype='u8')) result = adapter[:] assert_frame_equal(expected, result) adapter.field_types = {'a': 'f4'} expected = np.zeros((CASTS_TEST_NUM_RECORDS,), dtype=[(str('a'), str('f4')), (str('b'), str('f8'))]) for i in range(CASTS_TEST_NUM_RECORDS): expected[i] = (i, float('{0}.{0}'.format(i))) expected = pd.DataFrame.from_records(expected, index=np.arange(CASTS_TEST_NUM_RECORDS, dtype='u8')) result = adapter[:] assert_frame_equal(expected, result) adapter = PostgresAdapter(postgres.url(), 'geometric_test', dataframe=True, field_filter=['point', 'line', 'polygon']) result = adapter[:] point_data = np.empty(1, dtype='O') point_data[0] = [1.1, 2.2] line_data = np.empty(1, dtype='O') line_data[0] = [1.0, 2.0, 3.0] polygon_data = np.empty(1, dtype='O') polygon_data[0] = [(1.0, 2.0), (3.0, 4.0), (5.0, 6.0)] expected = pd.DataFrame(OrderedDict([('point', point_data), ('line', line_data), ('polygon', polygon_data)]), index=np.array([0], dtype='u8')) assert_frame_equal(expected, result) adapter = PostgresAdapter(postgres.url(), 'fixed_strings_test', dataframe=True) result = adapter[:] expected = pd.DataFrame(['aaa ', 'bbb ', 'ccc '], columns=['fixed'], index=np.array([0, 1, 2], dtype='u8')) assert_frame_equal(expected, result) with pytest.raises(RuntimeError): adapter.field_shapes = {'fixed': 2}
adapter.field_shapes = {'fixed': 2} def test_missing_values(postgres): # Don't test missing values for PostGIS types for now. Since PostGIS type metadata # is stored by postgresql as actual data in the record, an empty or missing # value in a PostGIS column contains no metadata about what type it # actually is (and postgresql doesn't know about GIS types so doesn't # store that column metadata anywhere). In order to handle missing data # for PostGIS types, we'll probably need to come up with some sort of <<<<<<< HEAD # generic PostGIS object or dtype which can be set to NULL for ***REMOVED*** ======= # generic PostGIS object or dtype which can be set to NULL for missing data. >>>>>>> 14dcbb9542f8d05344fd4a2cc4ef07c47528a8f1 adapter = PostgresAdapter(postgres.url(), table='missing_values_test') adapter.field_shapes = {'path': 2} result = adapter[:] expected = np.array([('', 0, np.nan, [np.nan, np.nan], [(np.nan, np.nan), (np.nan, np.nan)], [])], dtype=[(str('char'), str('U5')), (str('int4'), str('i4')), (str('float4'), str('f4')), (str('point'), str('f8'), 2), (str('path'), str('f8'), (2, 2)), (str('polygon'), str('O'))]) assert expected.dtype == result.dtype assert result[0][0] == '' assert result[0][1] == 0 assert np.isnan(result[0][2]) assert np.isnan(result[0][3][0]) assert np.isnan(result[0][3][1]) assert np.isnan(result[0][4][0][0])