예제 #1
0
    def get_time_series_masks(self, ram=128, logger=LOGGER):
        """
        """
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.FileUtils import ensure_dir
        from iota2.Common.FileUtils import FileSearch_AND

        time_series_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(time_series_dir, raise_exe=False)
        times_series_mask = os.path.join(time_series_dir,
                                         self.time_series_masks_name)

        # check patterns
        for pattern in self.data_type:
            user_feature = FileSearch_AND(self.tile_directory, True, pattern)
            if not user_feature:
                msg = "WARNING : '{}' not found in {}".format(
                    pattern, self.tile_directory)
                logger.error(msg)
                raise Exception(msg)
        nb_patterns = len(self.data_type)
        masks = []
        app_dep = []
        for _ in range(nb_patterns):
            dummy_mask, _ = self.footprint(data_value=0)
            dummy_mask.Execute()
            app_dep.append(dummy_mask)
            masks.append(dummy_mask)
        masks_stack = CreateConcatenateImagesApplication({
            "il": masks,
            "out": times_series_mask,
            "ram": str(ram)
        })

        return masks_stack, app_dep, nb_patterns
예제 #2
0
    def get_time_series_masks(self, ram=128, logger=LOGGER):
        """
        get time series masks
        """
        import os
        from iota2.Common.FileUtils import ensure_dir
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication

        preprocessed_dates = self.preprocess(working_dir=None, ram=str(ram))

        if self.write_dates_stack is False:
            nb_available_dates = len(preprocessed_dates)
        else:
            nb_available_dates = len(self.get_available_dates())
        available_masks = self.get_available_dates_masks()

        if nb_available_dates != len(available_masks):

            error = (f"Available dates ({nb_available_dates}) and avaibles "
                     f" masks ({len(available_masks)}) are different")
            logger.error(error)
            raise Exception(error)

        time_series_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(time_series_dir, raise_exe=False)
        times_series_masks_raster = os.path.join(time_series_dir,
                                                 self.time_series_masks_name)
        dates_time_series = CreateConcatenateImagesApplication({
            "il": available_masks,
            "out": times_series_masks_raster,
            "pixType": "int16",
            "ram": str(ram)
        })
        dep = []
        return dates_time_series, dep, len(available_masks)
예제 #3
0
    def get_time_series(self, ram=128):
        """
        TODO : be able of using a date interval
        Return
        ------
            list
                [(otb_Application, some otb's objects), time_series_labels]
                Functions dealing with otb's application instance has to
                returns every objects in the pipeline
        """
        import os
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.FileUtils import ensure_dir

        # needed to travel throught iota2's library
        app_dep = []

        preprocessed_dates = self.preprocess(working_dir=None, ram=str(ram))

        if self.write_dates_stack is False:
            dates_concatenation = []
            for _, dico_date in list(preprocessed_dates.items()):
                for _, reproj_date in list(dico_date["data"].items()):
                    dates_concatenation.append(reproj_date)
                    reproj_date.Execute()
                    app_dep.append(reproj_date)
        else:
            dates_concatenation = self.get_available_dates()

        time_series_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(time_series_dir, raise_exe=False)
        times_series_raster = os.path.join(time_series_dir,
                                           self.time_series_name)
        dates_time_series = CreateConcatenateImagesApplication({
            "il": dates_concatenation,
            "out": times_series_raster,
            "pixType": "int16",
            "ram": str(ram),
        })
        _, dates_in = self.write_dates_file()

        # build labels
        features_labels = [
            "{}_{}_{}".format(self.__class__.name, band_name, date)
            for date in dates_in for band_name in self.stack_band_position
        ]

        # if not all bands must be used
        if self.extracted_bands:
            app_dep.append(dates_time_series)
            (dates_time_series,
             features_labels) = self.extract_bands_time_series(
                 dates_time_series,
                 dates_in,
                 len(self.stack_band_position),
                 self.extracted_bands,
                 ram,
             )
        return (dates_time_series, app_dep), features_labels
예제 #4
0
    def get_time_series_masks(self, ram=128):
        """
        TODO : be able of using a date interval
        Return
        ------
            list
                [(otb_Application, some otb's objects), time_series_labels]
                Functions dealing with otb's application instance has to
                returns every objects in the pipeline
        """
        import os
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.FileUtils import ensure_dir

        # needed to travel throught iota2's library
        app_dep = []

        preprocessed_dates = self.preprocess(working_dir=None, ram=str(ram))

        dates_masks = []

        if self.write_dates_stack is False:
            for _, dico_date in list(preprocessed_dates.items()):
                mask_app, mask_app_dep = dico_date["mask"]
                mask_app.Execute()
                dates_masks.append(mask_app)
                app_dep.append(mask_app)
                app_dep.append(mask_app_dep)
        else:
            dates_masks = self.get_available_dates_masks()

        time_series_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(time_series_dir, raise_exe=False)
        times_series_mask = os.path.join(time_series_dir,
                                         self.time_series_masks_name)
        dates_time_series_mask = CreateConcatenateImagesApplication({
            "il":
            dates_masks,
            "out":
            times_series_mask,
            "pixType":
            "uint8",
            "ram":
            str(ram)
        })
        return dates_time_series_mask, app_dep, len(dates_masks)
예제 #5
0
파일: Sentinel_1.py 프로젝트: inglada/iota2
    def get_time_series_masks(self, ram=128, logger=LOGGER):
        """
        Due to the SAR data, masks series must be split by polarisation
        and orbit (ascending / descending)
        """
        from iota2.Common.OtbAppBank import getSARstack
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        (all_filtered, all_masks, interp_date_files,
         input_date_files) = getSARstack(self.s1_cfg,
                                         self.tile_name,
                                         self.all_tiles.split(" "),
                                         os.path.join(self.i2_output_path,
                                                      "features"),
                                         workingDirectory=None)
        # to be clearer
        s1_masks = OrderedDict()
        nb_avail_masks = 0
        for filtered, masks, _, _ in zip(all_filtered, all_masks,
                                         interp_date_files, input_date_files):
            sar_mode = os.path.basename(
                filtered.GetParameterValue("outputstack"))
            sar_mode = "_".join(os.path.splitext(sar_mode)[0].split("_")[0:-1])
            polarisation = sar_mode.split("_")[1]
            orbit = sar_mode.split("_")[2]
            mask_orbit_pol_name = f"{self.mask_orbit_pol_name}_{orbit}_{polarisation}.tif"

            mask_orbit_pol = os.path.join(self.features_dir, "tmp",
                                          mask_orbit_pol_name)
            masks_app = CreateConcatenateImagesApplication({
                "il":
                masks,
                "out":
                mask_orbit_pol,
                "pixType":
                "uint8" if len(masks) > 255 else "uint16",
                "ram":
                str(ram)
            })
            s1_masks[sar_mode] = masks_app
            nb_avail_masks += len(masks)

        dependancies = []
        return s1_masks, dependancies, nb_avail_masks
예제 #6
0
    def get_features(self, ram=128):
        """
        get features
        """
        import os
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import computeUserFeatures
        from iota2.Common.OtbAppBank import CreateIota2FeatureExtractionApplication
        from iota2.Common.FileUtils import ensure_dir

        features_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(features_dir, raise_exe=False)
        features_out = os.path.join(features_dir, self.features_names)

        ((in_stack, in_stack_dep),
         in_stack_features_labels) = self.get_time_series_gapfilling()
        _, dates_enabled = self.write_interpolation_dates_file()

        if not self.enable_gapfilling:
            (in_stack,
             in_stack_dep), in_stack_features_labels = self.get_time_series()
            _, dates_enabled = self.write_dates_file()

        in_stack.Execute()
        app_dep = []
        if self.hand_features_flag:
            hand_features = self.hand_features
            comp = (len(self.stack_band_position)
                    if not self.extracted_bands else len(self.extracted_bands))
            (user_date_features, fields_userfeat, user_feat_date,
             stack) = computeUserFeatures(in_stack, dates_enabled, comp,
                                          hand_features.split(","))
            user_date_features.Execute()
            app_dep.append([user_date_features, user_feat_date, stack])

        if self.features:
            bands_avail = self.stack_band_position
            if self.extracted_bands:
                bands_avail = [
                    band_name for band_name, _ in self.extracted_bands
                ]
                # check mandatory bands
                if "B4" not in bands_avail:
                    raise Exception(
                        "red band (B4) is needed to compute features")
                if "B5" not in bands_avail:
                    raise Exception(
                        "nir band (B5) is needed to compute features")
                if "B6" not in bands_avail:
                    raise Exception(
                        "swir band (B6) is needed to compute features")
            feat_parameters = {
                "in": in_stack,
                "out": features_out,
                "comp": len(bands_avail),
                "red": bands_avail.index("B4") + 1,
                "nir": bands_avail.index("B5") + 1,
                "swir": bands_avail.index("B6") + 1,
                "copyinput": self.copy_input,
                "relrefl": self.rel_refl,
                "keepduplicates": self.keep_dupl,
                "acorfeat": self.acorfeat,
                "pixType": "int16",
                "ram": str(ram),
            }

            features_app = CreateIota2FeatureExtractionApplication(
                feat_parameters)
            if self.copy_input is False:
                in_stack_features_labels = []
            features_labels = (
                in_stack_features_labels +
                self.get_features_labels(dates_enabled, self.rel_refl,
                                         self.keep_dupl, self.copy_input))
        else:
            features_app = in_stack
            features_labels = in_stack_features_labels

        app_dep.append([in_stack, in_stack_dep])

        if self.hand_features_flag:
            features_app.Execute()
            app_dep.append(features_app)
            features_app = CreateConcatenateImagesApplication({
                "il": [features_app, user_date_features],
                "out":
                features_out,
                "ram":
                str(ram),
            })
            features_labels += fields_userfeat
        return (features_app, app_dep), features_labels
예제 #7
0
    def preprocess_date(self,
                        date_dir,
                        out_prepro,
                        working_dir=None,
                        ram=128,
                        logger=LOGGER):
        """
        Preprocess each date
        """
        import os
        import shutil
        from gdal import Warp
        import multiprocessing as mp
        from osgeo.gdalconst import GDT_Byte
        from collections import OrderedDict
        from iota2.Common.FileUtils import ensure_dir
        from iota2.Common.FileUtils import getRasterProjectionEPSG
        from iota2.Common.FileUtils import FileSearch_AND
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import CreateSuperimposeApplication
        from iota2.Common.OtbAppBank import executeApp
        # manage directories
        date_stack_name = self.build_stack_date_name(date_dir)
        logger.debug(f"preprocessing {date_dir}")
        out_stack = os.path.join(date_dir, date_stack_name)
        if out_prepro:
            _, date_dir_name = os.path.split(date_dir)
            out_dir = os.path.join(out_prepro, date_dir_name)
            if not os.path.exists(out_dir):
                try:
                    os.mkdir(out_dir)
                except OSError:
                    logger.warning(f"{out_dir} already exists")
            out_stack = os.path.join(out_dir, date_stack_name)

        out_stack_processing = out_stack
        if working_dir:
            out_stack_processing = os.path.join(working_dir, date_stack_name)

        # get bands
        date_bands = [
            FileSearch_AND(date_dir, True,
                           "{}_{}.tif".format(self.data_type, bands_name))[0]
            for bands_name in self.stack_band_position
        ]

        # tile reference image generation
        base_ref = date_bands[0]
        ensure_dir(os.path.dirname(self.ref_image), raise_exe=False)
        base_ref_projection = getRasterProjectionEPSG(base_ref)

        if not os.path.exists(self.ref_image):
            logger.info(
                f"reference image generation {self.ref_image} from {base_ref}")
            Warp(self.ref_image,
                 base_ref,
                 multithread=True,
                 format="GTiff",
                 xRes=self.native_res,
                 yRes=self.native_res,
                 outputType=GDT_Byte,
                 srcSRS="EPSG:{}".format(base_ref_projection),
                 dstSRS="EPSG:{}".format(self.target_proj))

        # reproject / resample
        bands_proj = OrderedDict()
        all_reproj = []
        for band, band_name in zip(date_bands, self.stack_band_position):
            superimp, _ = CreateSuperimposeApplication({
                "inr": self.ref_image,
                "inm": band,
                "ram": str(ram)
            })
            bands_proj[band_name] = superimp
            all_reproj.append(superimp)

        if self.write_dates_stack:
            for reproj in all_reproj:
                reproj.Execute()
            date_stack = CreateConcatenateImagesApplication({
                "il":
                all_reproj,
                "ram":
                str(ram),
                "pixType":
                "int16",
                "out":
                out_stack_processing
            })
            same_proj = False
            if os.path.exists(out_stack):
                same_proj = int(getRasterProjectionEPSG(out_stack)) == int(
                    self.target_proj)

            if not os.path.exists(out_stack) or same_proj is False:
                # ~ date_stack.ExecuteAndWriteOutput()
                multi_proc = mp.Process(target=executeApp, args=[date_stack])
                multi_proc.start()
                multi_proc.join()
                if working_dir:
                    shutil.copy(out_stack_processing, out_stack)
                    os.remove(out_stack_processing)
        return bands_proj if self.write_dates_stack is False else out_stack
예제 #8
0
    def get_time_series_masks(self, ram=128):
        """
        get time series masks
        """
        import os
        import glob
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import CreateSuperimposeApplication
        from iota2.Common.OtbAppBank import CreateBandMathApplication
        from iota2.Common.FileUtils import ensure_dir
        from iota2.Common.FileUtils import getRasterProjectionEPSG

        time_series_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(time_series_dir, raise_exe=False)
        times_series_mask = os.path.join(time_series_dir,
                                         self.time_series_masks_name)

        # needed to travel throught iota2's library
        app_dep = []

        input_dates = [
            os.path.join(self.tile_directory, cdir)
            for cdir in os.listdir(self.tile_directory)
        ]
        input_dates = self.sort_dates_directories(input_dates)

        # get date's data
        date_data = []
        div_mask_patter = list(self.masks_rules.keys())[self.border_pos]
        cloud_mask_patter = list(self.masks_rules.keys())[self.cloud_pos]
        sat_mask_patter = list(self.masks_rules.keys())[self.sat_pos]
        if self.vhr_path.lower() != "none":
            div_mask_patter = div_mask_patter.replace(".TIF", "_COREG.TIF")
            cloud_mask_patter = div_mask_patter.replace(".TIF", "_COREG.TIF")
            sat_mask_patter = div_mask_patter.replace(".TIF", "_COREG.TIF")

        for date_dir in input_dates:
            div_mask = glob.glob(
                os.path.join(date_dir,
                             f"{self.struct_path_masks}{div_mask_patter}"))[0]
            cloud_mask = glob.glob(
                os.path.join(
                    date_dir,
                    f"{self.struct_path_masks}{cloud_mask_patter}"))[0]
            sat_mask = glob.glob(
                os.path.join(date_dir,
                             f"{self.struct_path_masks}{sat_mask_patter}"))[0]
            # im1 = div, im2 = cloud, im3 = sat
            div_expr = "(1-(im1b1/2==rint(im1b1/2)))"
            cloud_expr = "im2b1"
            sat_expr = "im3b1"
            # expr = "*".join([div_expr, cloud_expr, sat_expr])
            expr = f"({div_expr} + {cloud_expr} + {sat_expr})==0?0:1"
            date_binary_mask = CreateBandMathApplication({
                "il": [div_mask, cloud_mask, sat_mask],
                "exp":
                expr
            })
            date_binary_mask.Execute()
            date_data.append(date_binary_mask)
            app_dep.append(date_binary_mask)
        dates_time_series_mask = CreateConcatenateImagesApplication({
            "il":
            date_data,
            "ram":
            str(ram),
            "out":
            times_series_mask
        })

        origin_proj = getRasterProjectionEPSG(sat_mask)
        if int(origin_proj) != int(self.target_proj):
            dates_time_series_mask.Execute()
            app_dep.append(dates_time_series_mask)
            self.generate_raster_ref(sat_mask)
            dates_time_series_mask, _ = CreateSuperimposeApplication({
                "inr":
                self.ref_image,
                "inm":
                dates_time_series_mask,
                "interpolator":
                "nn",
                "out":
                times_series_mask,
                "ram":
                str(ram)
            })

        return dates_time_series_mask, app_dep, len(date_data)
예제 #9
0
    def get_time_series(self, ram=128):
        """
        TODO : be able of using a date interval
        Return
        ------
            list
                [(otb_Application, some otb's objects), time_series_labels]
                Functions dealing with otb's application instance has to
                returns every objects in the pipeline
        """
        import os
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import CreateSuperimposeApplication
        from iota2.Common.FileUtils import ensure_dir
        from iota2.Common.FileUtils import getRasterProjectionEPSG
        from iota2.Common.FileUtils import FileSearch_AND

        # needed to travel throught iota2's library
        app_dep = []

        input_dates = [
            os.path.join(self.tile_directory, cdir)
            for cdir in os.listdir(self.tile_directory)
        ]
        input_dates = self.sort_dates_directories(input_dates)

        # get date's data
        date_data = []
        for date_dir in input_dates:
            l5_old_date = FileSearch_AND(date_dir, True, self.data_type,
                                         ".TIF")[0]
            if self.vhr_path.lower() != "none":
                l5_old_date = FileSearch_AND(date_dir, True, self.data_type,
                                             "COREG", ".TIF")[0]
            date_data.append(l5_old_date)

        time_series_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(time_series_dir, raise_exe=False)
        times_series_raster = os.path.join(time_series_dir,
                                           self.time_series_name)
        dates_time_series = CreateConcatenateImagesApplication({
            "il": date_data,
            "out": times_series_raster,
            "ram": str(ram)
        })
        _, dates_in = self.write_dates_file()

        # build labels
        features_labels = [
            f"{self.__class__.name}_{band_name}_{date}" for date in dates_in
            for band_name in self.stack_band_position
        ]

        # if not all bands must be used
        if self.extracted_bands:
            app_dep.append(dates_time_series)
            (dates_time_series,
             features_labels) = self.extract_bands_time_series(
                 dates_time_series, dates_in, len(self.stack_band_position),
                 self.extracted_bands, ram)
        origin_proj = getRasterProjectionEPSG(date_data[0])
        if int(origin_proj) != int(self.target_proj):
            dates_time_series.Execute()
            app_dep.append(dates_time_series)
            self.generate_raster_ref(date_data[0])
            dates_time_series, _ = CreateSuperimposeApplication({
                "inr": self.ref_image,
                "inm": self.masks_rules,
                "out": times_series_raster,
                "ram": str(ram)
            })
        return (dates_time_series, app_dep), features_labels
예제 #10
0
    def preprocess_date(self,
                        date_dir,
                        out_prepro,
                        working_dir=None,
                        ram=128,
                        logger=LOGGER):
        """
        preprocess date
        """
        import os
        import shutil
        from collections import OrderedDict
        from gdal import Warp
        from osgeo.gdalconst import GDT_Byte
        import multiprocessing as mp
        from iota2.Common.FileUtils import ensure_dir
        from iota2.Common.FileUtils import FileSearch_AND
        from iota2.Common.FileUtils import getRasterProjectionEPSG
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import CreateSuperimposeApplication
        from iota2.Common.OtbAppBank import executeApp
        # manage directories
        date_stack_name = self.build_date_name(date_dir, self.suffix)
        logger.debug(f"preprocessing {date_dir}")
        r10_dir = self.get_date_dir(date_dir, 10)

        out_stack = os.path.join(r10_dir, date_stack_name)
        if out_prepro:
            out_dir = r10_dir.replace(date_dir, out_prepro)
            ensure_dir(out_dir, raise_exe=False)
            out_stack = os.path.join(out_dir, date_stack_name)
        out_stack_processing = out_stack
        if working_dir:
            out_stack_processing = os.path.join(working_dir, date_stack_name)

        # get bands
        date_bands = []
        for band in self.stack_band_position:
            if band in ["B02", "B03", "B04", "B08"]:
                date_bands.append(
                    FileSearch_AND(date_dir, True,
                                   "{}_".format(self.tile_name),
                                   "{}_10m.jp2".format(band))[0])
            elif band in ["B05", "B06", "B07", "B8A", "B11", "B12"]:
                date_bands.append(
                    FileSearch_AND(date_dir, True,
                                   "{}_".format(self.tile_name),
                                   "{}_20m.jp2".format(band))[0])
        # tile reference image generation
        base_ref = date_bands[0]
        logger.info(f"reference image generation {self.ref_image}"
                    f" from {base_ref}")
        ensure_dir(os.path.dirname(self.ref_image), raise_exe=False)
        base_ref_projection = getRasterProjectionEPSG(base_ref)
        if not os.path.exists(self.ref_image):
            Warp(self.ref_image,
                 base_ref,
                 multithread=True,
                 format="GTiff",
                 xRes=10,
                 yRes=10,
                 outputType=GDT_Byte,
                 srcSRS="EPSG:{}".format(base_ref_projection),
                 dstSRS="EPSG:{}".format(self.target_proj))
        # reproject / resample
        bands_proj = OrderedDict()
        all_reproj = []
        for band, band_name in zip(date_bands, self.stack_band_position):
            superimp, _ = CreateSuperimposeApplication({
                "inr": self.ref_image,
                "inm": band,
                "ram": str(ram)
            })
            bands_proj[band_name] = superimp
            all_reproj.append(superimp)

        if self.write_dates_stack:
            for reproj in all_reproj:
                reproj.Execute()
            date_stack = CreateConcatenateImagesApplication({
                "il":
                all_reproj,
                "ram":
                str(ram),
                "pixType":
                "int16",
                "out":
                out_stack_processing
            })
            same_proj = False
            if os.path.exists(out_stack):
                same_proj = int(getRasterProjectionEPSG(out_stack)) == int(
                    self.target_proj)

            if not os.path.exists(out_stack) or same_proj is False:
                # date_stack.ExecuteAndWriteOutput()
                multi_proc = mp.Process(target=executeApp, args=[date_stack])
                multi_proc.start()
                multi_proc.join()
                if working_dir:
                    shutil.copy(out_stack_processing, out_stack)
                    os.remove(out_stack_processing)
        return bands_proj if self.write_dates_stack is False else out_stack
예제 #11
0
def validity(tile_name,
             config_path,
             output_path,
             maskOut_name,
             view_threshold,
             workingDirectory=None,
             RAM=128):
    """
    function dedicated to compute validity raster/vector by tile

    Parameters
    ----------
    tile_name [string]
        tile's name
    config_path [string]
        absolute path to the configuration file
    maskOut_name [string]
        output vector mask's name
    view_threshold [int]
        threshold
    working_directory [string]
        absolute path to a working directory
    RAM [int]
        pipeline's size (Mo)
    """
    import os
    import shutil
    from iota2.Common.ServiceConfigFile import iota2_parameters
    from iota2.Sensors.Sensors_container import sensors_container
    from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
    from iota2.Common.OtbAppBank import CreateBandMathApplication
    from iota2.Common.Utils import run
    from iota2.Common.FileUtils import erodeShapeFile
    from iota2.Common.FileUtils import removeShape
    from iota2.Common.FileUtils import ensure_dir

    features_dir = os.path.join(output_path, "features", tile_name)
    validity_name = "nbView.tif"

    validity_out = os.path.join(features_dir, validity_name)
    validity_processing = validity_out
    if workingDirectory:
        ensure_dir(os.path.join(workingDirectory, tile_name))
        validity_processing = os.path.join(workingDirectory, tile_name,
                                           validity_name)

    running_parameters = iota2_parameters(config_path)
    sensors_parameters = running_parameters.get_sensors_parameters(tile_name)
    remote_sensor_container = sensors_container(tile_name, workingDirectory,
                                                output_path,
                                                **sensors_parameters)

    sensors_time_series_masks = remote_sensor_container.get_sensors_time_series_masks(
        available_ram=RAM)
    sensors_masks_size = []
    sensors_masks = []
    for sensor_name, (time_series_masks, time_series_dep,
                      nb_bands) in sensors_time_series_masks:
        if sensor_name.lower() == "sentinel1":
            for _, time_series_masks_app in list(time_series_masks.items()):
                time_series_masks_app.Execute()
                sensors_masks.append(time_series_masks_app)
        else:
            time_series_masks.Execute()
            sensors_masks.append(time_series_masks)
        sensors_masks_size.append(nb_bands)

    total_dates = sum(sensors_masks_size)
    merge_masks = CreateConcatenateImagesApplication({
        "il": sensors_masks,
        "ram": str(RAM)
    })
    merge_masks.Execute()

    validity_app = CreateBandMathApplication({
        "il":
        merge_masks,
        "exp":
        "{}-({})".format(
            total_dates,
            "+".join(["im1b{}".format(i + 1) for i in range(total_dates)])),
        "ram":
        str(0.7 * RAM),
        "pixType":
        "uint8" if total_dates < 255 else "uint16",
        "out":
        validity_processing
    })
    if not os.path.exists(os.path.join(features_dir, validity_name)):
        validity_app.ExecuteAndWriteOutput()
        if workingDirectory:
            shutil.copy(validity_processing,
                        os.path.join(features_dir, validity_name))
    threshold_raster_out = os.path.join(features_dir,
                                        maskOut_name.replace(".shp", ".tif"))
    threshold_vector_out_tmp = os.path.join(
        features_dir, maskOut_name.replace(".shp", "_TMP.shp"))
    threshold_vector_out = os.path.join(features_dir, maskOut_name)

    input_threshold = validity_processing if os.path.exists(
        validity_processing) else validity_out

    threshold_raster = CreateBandMathApplication({
        "il":
        input_threshold,
        "exp":
        "im1b1>={}?1:0".format(view_threshold),
        "ram":
        str(0.7 * RAM),
        "pixType":
        "uint8",
        "out":
        threshold_raster_out
    })
    threshold_raster.ExecuteAndWriteOutput()
    cmd_poly = f"gdal_polygonize.py -mask {threshold_raster_out} {threshold_raster_out} -f \"ESRI Shapefile\" {threshold_vector_out_tmp} {os.path.splitext(os.path.basename(threshold_vector_out_tmp))[0]} cloud"
    run(cmd_poly)

    erodeShapeFile(threshold_vector_out_tmp, threshold_vector_out, 0.1)
    os.remove(threshold_raster_out)
    removeShape(threshold_vector_out_tmp.replace(".shp", ""),
                [".prj", ".shp", ".dbf", ".shx"])
예제 #12
0
파일: Sentinel_1.py 프로젝트: inglada/iota2
    def get_features(self, ram=128, logger=LOGGER):
        """get sar features
        """
        import configparser
        from iota2.Common.FileUtils import getNbDateInTile, FileSearch_AND
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import generateSARFeat_dates
        from iota2.Common.OtbAppBank import getInputParameterOutput

        if self.use_gapfilling:
            (s1_data,
             dependancies), s1_labels = self.get_time_series_gapFilling(ram)
        else:
            (s1_data, dependancies), s1_labels = self.get_time_series(ram)
        config = configparser.ConfigParser()
        config.read(self.s1_cfg)

        sar_features_expr = None
        if config.has_option("Features", "expression"):
            sar_features_expr_cfg = config.get("Features", "expression")
            if not "none" in sar_features_expr_cfg.lower():
                sar_features_expr = sar_features_expr_cfg.split(",")

        dependancies = [dependancies]
        s1_features = []
        sar_time_series = {
            "asc": {
                "vv": {
                    "App": None,
                    "availDates": None
                },
                "vh": {
                    "App": None,
                    "availDates": None
                }
            },
            "des": {
                "vv": {
                    "App": None,
                    "availDates": None
                },
                "vh": {
                    "App": None,
                    "availDates": None
                }
            }
        }
        for sensor_mode, time_series_app in list(s1_data.items()):
            _, polarisation, orbit = sensor_mode.split("_")
            # inputs
            if self.write_outputs_flag is False:
                time_series_app.Execute()
            else:
                time_series_raster = time_series_app.GetParameterValue(
                    getInputParameterOutput(time_series_app))
                if not os.path.exists(time_series_raster):
                    time_series_app.ExecuteAndWriteOutput()
                if os.path.exists(time_series_raster):
                    time_series_app = time_series_raster

            sar_time_series[orbit.lower()][
                polarisation.lower()]["App"] = time_series_app

            s1_features.append(time_series_app)
            dependancies.append(time_series_app)
            if self.use_gapfilling:
                date_file = FileSearch_AND(
                    self.features_dir, True,
                    "{}_{}_dates_interpolation.txt".format(
                        polarisation.lower(), orbit.upper()))[0]
            else:
                tar_dir = os.path.join(config.get("Paths", "output"),
                                       self.tile_name[1:])
                date_file = FileSearch_AND(
                    tar_dir, True,
                    "{}_{}_dates_input.txt".format(polarisation.lower(),
                                                   orbit.upper()))[0]
            sar_time_series[orbit.lower()][
                polarisation.lower()]["availDates"] = getNbDateInTile(
                    date_file, display=False, raw_dates=True)
        features_labels = []
        for sensor_mode, features in list(s1_labels.items()):
            features_labels += features
        if sar_features_expr:
            sar_user_features_raster = os.path.join(
                self.features_dir, "tmp", self.user_sar_features_name)
            user_sar_features, user_sar_features_lab = generateSARFeat_dates(
                sar_features_expr, sar_time_series, sar_user_features_raster)
            if self.write_outputs_flag is False:
                user_sar_features.Execute()
            else:
                if not os.path.exists(sar_user_features_raster):
                    user_sar_features.ExecuteAndWriteOutput()
                if os.path.exists(sar_user_features_raster):
                    user_sar_features = sar_user_features_raster
            dependancies.append(user_sar_features)
            s1_features.append(user_sar_features)
            features_labels += user_sar_features_lab
        sar_features_raster = os.path.join(self.features_dir, "tmp",
                                           self.sar_features_name)
        sar_features = CreateConcatenateImagesApplication({
            "il": s1_features,
            "out": sar_features_raster,
            "ram": str(ram)
        })
        return (sar_features, dependancies), features_labels
예제 #13
0
파일: Sentinel_1.py 프로젝트: inglada/iota2
    def get_time_series_gapFilling(self, ram=128):
        """
        Due to the SAR data, time series must be split by polarisation
        and orbit (ascending / descending)
        """
        import configparser

        from iota2.Common.FileUtils import getNbDateInTile
        from iota2.Common.OtbAppBank import getSARstack
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import CreateImageTimeSeriesGapFillingApplication
        from iota2.Common.OtbAppBank import getInputParameterOutput

        (all_filtered, all_masks, interp_date_files,
         input_date_files) = getSARstack(self.s1_cfg,
                                         self.tile_name,
                                         self.all_tiles.split(" "),
                                         os.path.join(self.i2_output_path,
                                                      "features"),
                                         workingDirectory=None)
        # to be clearer
        s1_data = OrderedDict()
        s1_labels = OrderedDict()

        config = configparser.ConfigParser()
        config.read(self.s1_cfg)

        interpolation_method = "linear"
        if config.has_option("Processing", "gapFilling_interpolation"):
            interpolation_method = config.get("Processing",
                                              "gapFilling_interpolation")
        dependancies = []

        for filtered, masks, interp_dates, in_dates in zip(
                all_filtered, all_masks, interp_date_files, input_date_files):
            sar_mode = os.path.basename(
                filtered.GetParameterValue("outputstack"))
            sar_mode = "_".join(os.path.splitext(sar_mode)[0].split("_")[0:-1])
            polarisation = sar_mode.split("_")[1]
            orbit = sar_mode.split("_")[2]

            gapfilling_orbit_pol_name_masks = f"{self.gapfilling_orbit_pol_name_mask}_{orbit}_{polarisation}.tif"
            gapfilling_raster_mask = os.path.join(
                self.features_dir, "tmp", gapfilling_orbit_pol_name_masks)

            masks_stack = CreateConcatenateImagesApplication({
                "il": masks,
                "out": gapfilling_raster_mask,
                "ram": str(ram)
            })

            if self.write_outputs_flag is False:
                filtered.Execute()
                masks_stack.Execute()
            else:
                filtered_raster = filtered.GetParameterValue(
                    getInputParameterOutput(filtered))
                masks_stack_raster = masks_stack.GetParameterValue(
                    getInputParameterOutput(masks_stack))
                if not os.path.exists(masks_stack_raster):
                    masks_stack.ExecuteAndWriteOutput()
                if not os.path.exists(filtered_raster):
                    filtered.ExecuteAndWriteOutput()
                if os.path.exists(masks_stack_raster):
                    masks_stack = masks_stack_raster
                if os.path.exists(filtered_raster):
                    filtered = filtered_raster
            dependancies.append((filtered, masks_stack))
            gapfilling_orbit_pol_name = f"{self.gapfilling_orbit_pol_name}_{orbit}_{polarisation}.tif"
            gapfilling_raster = os.path.join(self.features_dir, "tmp",
                                             gapfilling_orbit_pol_name)

            gap_app = CreateImageTimeSeriesGapFillingApplication({
                "in":
                filtered,
                "mask":
                masks_stack,
                "it":
                interpolation_method,
                "id":
                in_dates,
                "od":
                interp_dates,
                "comp":
                str(1),
                "out":
                gapfilling_raster
            })
            s1_data[sar_mode] = gap_app

            sar_dates = sorted(getNbDateInTile(interp_dates,
                                               display=False,
                                               raw_dates=True),
                               key=lambda x: int(x))
            labels = [
                "{}_{}_{}_{}".format(self.__class__.name, orbit, polarisation,
                                     date).lower() for date in sar_dates
            ]
            s1_labels[sar_mode] = labels
        return (s1_data, dependancies), s1_labels
예제 #14
0
def generate_fake_l8_old_data(root_directory: str,
                              tile_name: str,
                              dates: List[str],
                              res: Optional[float] = 30.0):
    """
    Parameters
    ----------
    root_directory : string
        path to generate Sentinel-2 dates
    tile_name : string
        THEIA tile name (ex:T31TCJ)
    dates : list
        list of strings reprensentig dates format : YYYYMMDD
    """

    tile_dir = os.path.join(root_directory, tile_name)
    ensure_dir(tile_dir)

    band_of_interest = ["B1", "B2", "B3", "B4", "B5", "B6", "B7"]
    masks_of_interest = ["DIV", "BINARY_MASK", "NUA", "SAT"]

    origin_x = 566377
    origin_y = 6284029
    array_name = "iota2_binary"
    for date in dates:
        date_dir = os.path.join(
            tile_dir, (f"LANDSAT8_OLITIRS_XS_{date}_N2A_{tile_name}"))
        mask_date_dir = os.path.join(date_dir, "MASK")
        ensure_dir(date_dir)
        ensure_dir(mask_date_dir)
        all_bands = []
        for cpt, mask in enumerate(masks_of_interest):
            new_mask = os.path.join(mask_date_dir,
                                    (f"LANDSAT8_OLITIRS_XS_{date}_N2A"
                                     f"_{tile_name}_{mask}.TIF"))

            array_to_raster(fun_array(array_name) * cpt % 2,
                            new_mask,
                            pixel_size=res,
                            origin_x=origin_x,
                            origin_y=origin_y)
        for band in band_of_interest:
            new_band = os.path.join(date_dir,
                                    (f"LANDSAT8_OLITIRS_XS_{date}_N2A"
                                     f"_{tile_name}_{band}.TIF"))
            all_bands.append(new_band)
            array = fun_array(array_name)
            random_array = []
            for val in array:
                val_tmp = []
                for pix_val in val:
                    val_tmp.append(pix_val * random.random() * 1000)
                random_array.append(val_tmp)

            array_to_raster(np.array(random_array),
                            new_band,
                            pixel_size=res,
                            origin_x=origin_x,
                            origin_y=origin_y)
            stack_date = os.path.join(date_dir, (f"LANDSAT8_OLITIRS_XS_{date}_"
                                                 "N2A_ORTHO_SURF_CORR"
                                                 f"_PENTE_{tile_name}.TIF"))
            stack_app = CreateConcatenateImagesApplication({
                "il": all_bands,
                "out": stack_date
            })
            stack_app.ExecuteAndWriteOutput()
예제 #15
0
def generate_fake_s2_l3a_data(root_directory: str,
                              tile_name: str,
                              dates: List[str],
                              res: Optional[float] = 30.0):
    """
    Parameters
    ----------
    root_directory : string
        path to generate Sentinel-2 l3a dates
    tile_name : string
        THEIA tile name (ex:T31TCJ)
    dates : list
        list of strings reprensentig dates format : YYYYMMDD
    """

    tile_dir = os.path.join(root_directory, tile_name)
    ensure_dir(tile_dir)

    band_of_interest = [
        "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12"
    ]
    masks_of_interest = ["BINARY_MASK", "FLG_R1"]

    origin_x = 566377
    origin_y = 6284029
    array_name = "iota2_binary"
    for date in dates:
        date_dir = os.path.join(tile_dir,
                                ("SENTINEL2X_{}-000000-"
                                 "000_L3A_{}_D_V1-7".format(date, tile_name)))
        mask_date_dir = os.path.join(date_dir, "MASKS")
        ensure_dir(date_dir)
        ensure_dir(mask_date_dir)
        all_bands = []
        for cpt, mask in enumerate(masks_of_interest):
            new_mask = os.path.join(
                mask_date_dir,
                ("SENTINEL2X_{}-000000-000_L3A"
                 "_{}_D_V1-7_{}.tif".format(date, tile_name, mask)))

            array_to_raster(fun_array(array_name) * cpt % 2,
                            new_mask,
                            pixel_size=res,
                            origin_x=origin_x,
                            origin_y=origin_y)
        for band in band_of_interest:
            new_band = os.path.join(
                date_dir,
                ("SENTINEL2X_{}-000000-000_L3A"
                 "_{}_D_V1-7_FRC_{}.tif".format(date, tile_name, band)))
            all_bands.append(new_band)
            array = fun_array(array_name)
            random_array = []
            for val in array:
                val_tmp = []
                for pix_val in val:
                    val_tmp.append(pix_val * random.random() * 1000)
                random_array.append(val_tmp)

            array_to_raster(np.array(random_array),
                            new_band,
                            pixel_size=res,
                            origin_x=origin_x,
                            origin_y=origin_y)
            stack_date = os.path.join(
                date_dir, ("SENTINEL2X_{}-000000-000_L3A_{}_D_V1-7"
                           "_FRC_STACK.tif".format(date, tile_name)))
            stack_app = CreateConcatenateImagesApplication({
                "il": all_bands,
                "out": stack_date
            })
            stack_app.ExecuteAndWriteOutput()
예제 #16
0
def generateFeatures(pathWd: str,
                     tile: str,
                     sar_optical_post_fusion: bool,
                     output_path: str,
                     sensors_parameters: sensors_params,
                     mode: Optional[str] = "usually"):
    """
    usage : Function use to compute features according to a configuration file

    Parameters
    ----------
    pathWd : str
        path to a working directory
    tile : str
        tile's name
    sar_optical_post_fusion : bool
        flag use to remove SAR data from features
    mode : str
        'usually' / 'SAR' used to get only sar features
    """
    from iota2.Common.OtbAppBank import getInputParameterOutput
    from iota2.Sensors.Sensors_container import sensors_container
    from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication

    LOGGER.info(f"prepare features for tile : {tile}")

    sensor_tile_container = sensors_container(tile, pathWd, output_path,
                                              **sensors_parameters)

    feat_labels = []
    dep = []
    feat_app = []
    if mode == "usually" and sar_optical_post_fusion is False:
        sensors_features = sensor_tile_container.get_sensors_features(
            available_ram=1000)
        for _, ((sensor_features, sensor_features_dep),
                features_labels) in sensors_features:
            sensor_features.Execute()
            feat_app.append(sensor_features)
            dep.append(sensor_features_dep)
            feat_labels = feat_labels + features_labels
    elif mode == "usually" and sar_optical_post_fusion is True:
        sensor_tile_container.remove_sensor("Sentinel1")
        sensors_features = sensor_tile_container.get_sensors_features(
            available_ram=1000)
        for _, ((sensor_features, sensor_features_dep),
                features_labels) in sensors_features:
            sensor_features.Execute()
            feat_app.append(sensor_features)
            dep.append(sensor_features_dep)
            feat_labels = feat_labels + features_labels
    elif mode == "SAR":
        sensor = sensor_tile_container.get_sensor("Sentinel1")
        (sensor_features,
         sensor_features_dep), feat_labels = sensor.get_features(ram=1000)
        sensor_features.Execute()
        feat_app.append(sensor_features)
        dep.append(sensor_features_dep)

    dep.append(feat_app)

    features_name = "{}_Features.tif".format(tile)
    features_dir = os.path.join(output_path, "features", tile, "tmp")
    features_raster = os.path.join(features_dir, features_name)

    if len(feat_app) > 1:
        all_features = CreateConcatenateImagesApplication({
            "il":
            feat_app,
            "out":
            features_raster
        })
    else:
        all_features = sensor_features
        output_param_name = getInputParameterOutput(sensor_features)
        all_features.SetParameterString(output_param_name, features_raster)
    return all_features, feat_labels, dep
예제 #17
0
    def get_features(self, ram=128, logger=LOGGER):
        """generate user features. Concatenates all of them
        """
        from gdal import Warp
        from osgeo.gdalconst import GDT_Byte
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import CreateSuperimposeApplication
        from iota2.Common.FileUtils import FileSearch_AND
        from iota2.Common.FileUtils import ensure_dir
        from iota2.Common.FileUtils import getRasterProjectionEPSG
        from iota2.Common.FileUtils import getRasterResolution
        from iota2.Common.FileUtils import getRasterNbands

        features_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(features_dir, raise_exe=False)
        features_out = os.path.join(features_dir, self.features_names)

        user_features_found = []
        user_features_bands = []
        for pattern in self.data_type:
            user_feature = FileSearch_AND(self.tile_directory, True, pattern)
            if user_feature:
                user_features_bands.append(getRasterNbands(user_feature[0]))
                user_features_found.append(user_feature[0])
            else:
                msg = "WARNING : '{}' not found in {}".format(
                    pattern, self.tile_directory)
                logger.error(msg)
                raise Exception(msg)

        user_feat_stack = CreateConcatenateImagesApplication({
            "il":
            user_features_found,
            "ram":
            str(ram),
            "out":
            features_out
        })
        base_ref = user_features_found[0]
        base_ref_projection = getRasterProjectionEPSG(base_ref)
        if not os.path.exists(self.ref_image):
            base_ref_res_x, _ = getRasterResolution(base_ref)
            Warp(self.ref_image,
                 base_ref,
                 multithread=True,
                 format="GTiff",
                 xRes=base_ref_res_x,
                 yRes=base_ref_res_x,
                 outputType=GDT_Byte,
                 srcSRS="EPSG:{}".format(base_ref_projection),
                 dstSRS="EPSG:{}".format(self.target_proj))
        app_dep = []
        if int(base_ref_projection) != (self.target_proj):
            user_feat_stack.Execute()
            app_dep.append(user_feat_stack)
            user_feat_stack, _ = CreateSuperimposeApplication({
                "inr": self.ref_image,
                "inm": user_feat_stack,
                "out": features_out,
                "ram": str(ram)
            })
        features_labels = [
            "{}_band_{}".format(pattern, band_num)
            for pattern, nb_bands in zip(self.data_type, user_features_bands)
            for band_num in range(nb_bands)
        ]
        return (user_feat_stack, app_dep), features_labels
예제 #18
0
    def get_features(self, ram=128):
        """
        get features
        """
        import os
        import multiprocessing as mp
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import computeUserFeatures
        from iota2.Common.OtbAppBank import CreateIota2FeatureExtractionApplication
        from iota2.Common.OtbAppBank import getInputParameterOutput
        from iota2.Common.FileUtils import ensure_dir
        from iota2.Common.OtbAppBank import executeApp
        features_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(features_dir, raise_exe=False)
        features_out = os.path.join(features_dir, self.features_names)

        # ~ features = self.cfg_IOTA2.getParam("GlobChain", "features")
        # ~ enable_gapFilling = self.cfg_IOTA2.getParam("GlobChain",
        # ~ "useGapFilling")
        # ~ hand_features_flag = self.cfg_IOTA2.getParam('GlobChain',
        # ~ 'useAdditionalFeatures')

        # input
        (in_stack, in_stack_dep
         ), in_stack_features_labels = self.get_time_series_gapfilling()
        _, dates_enabled = self.write_interpolation_dates_file()

        if not self.enable_gapfilling:
            (in_stack,
             in_stack_dep), in_stack_features_labels = self.get_time_series()
            _, dates_enabled = self.write_dates_file()

        if self.write_outputs_flag is False:
            in_stack.Execute()
        else:
            in_stack_raster = in_stack.GetParameterValue(
                getInputParameterOutput(in_stack))
            if not os.path.exists(in_stack_raster):
                # in_stack.ExecuteAndWriteOutput()
                multi_proc = mp.Process(target=executeApp, args=[in_stack])
                multi_proc.start()
                multi_proc.join()
            if os.path.exists(in_stack_raster):
                in_stack = in_stack_raster
        # output
        app_dep = []
        if self.hand_features_flag:
            # ~ hand_features = self.cfg_IOTA2.getParam("Sentinel_2",
            # ~ "additionalFeatures")
            comp = len(
                self.stack_band_position) if not self.extracted_bands else len(
                    self.extracted_bands)
            (user_date_features, fields_userfeat, user_feat_date,
             stack) = computeUserFeatures(in_stack, dates_enabled, comp,
                                          self.hand_features.split(","))
            user_date_features.Execute()
            app_dep.append([user_date_features, user_feat_date, stack])

        if self.features:
            bands_avail = self.stack_band_position
            if self.extracted_bands:
                bands_avail = [
                    band_name for band_name, _ in self.extracted_bands
                ]
                # check mandatory bands
                if "B4" not in bands_avail:
                    raise Exception(
                        "red band (B4) is needed to compute features")
                if "B8" not in bands_avail:
                    raise Exception(
                        "nir band (B8) is needed to compute features")
                if "B11" not in bands_avail:
                    raise Exception(
                        "swir band (B11) is needed to compute features")

            feat_parameters = {
                "in": in_stack,
                "out": features_out,
                "comp": len(bands_avail),
                "red": bands_avail.index("B4") + 1,
                "nir": bands_avail.index("B8") + 1,
                "swir": bands_avail.index("B11") + 1,
                "copyinput": self.copy_input,
                "relrefl": self.rel_refl,
                "keepduplicates": self.keep_dupl,
                "acorfeat": self.acorfeat,
                "pixType": "int16",
                "ram": str(ram)
            }

            features_app = CreateIota2FeatureExtractionApplication(
                feat_parameters)
            if self.copy_input is False:
                in_stack_features_labels = []
            features_labels = (
                in_stack_features_labels +
                self.get_features_labels(dates_enabled, self.rel_refl,
                                         self.keep_dupl, self.copy_input))
        else:
            features_app = in_stack
            features_labels = in_stack_features_labels

        app_dep.append([in_stack, in_stack_dep])

        if self.hand_features_flag:
            features_app.Execute()
            app_dep.append(features_app)
            features_app = CreateConcatenateImagesApplication({
                "il": [features_app, user_date_features],
                "out":
                features_out,
                "ram":
                str(ram)
            })
            features_labels += fields_userfeat
        return (features_app, app_dep), features_labels