def data_for_specimen_id(specimen_id, sweep_qc_option, data_source, ap_window_length=0.006, target_sampling_rate=10000, nfiles=None): logging.debug("specimen_id: {}".format(specimen_id)) lsq_fail = False ssq_fail = False ramp_fail = False # Find or retrieve NWB file and ancillary info and construct an AibsDataSet object ontology = StimulusOntology( ju.read(StimulusOntology.DEFAULT_STIMULUS_ONTOLOGY_FILE)) if data_source == "local": nwb_path = nfiles[specimen_id] if type(nwb_path) is dict and "error" in nwb_path: logging.warning( "Problem getting NWB file for specimen {:d}".format( specimen_id)) return nwb_path data_set = HBGDataSet(nwb_file=nwb_path, ontology=ontology) else: logging.error("invalid data source specified ({})".format(data_source)) # Identify and preprocess long square sweeps try: lsq_sweep_numbers = categorize_iclamp_sweeps( data_set, ontology.long_square_names, sweep_qc_option=sweep_qc_option, specimen_id=specimen_id) (lsq_sweeps, lsq_features, lsq_start, lsq_end, lsq_spx) = preprocess_long_square_sweeps(data_set, lsq_sweep_numbers) except Exception as detail: lsq_fail = True logging.warning( "Exception when preprocessing long square sweeps from specimen {:d}" .format(specimen_id)) logging.warning(detail) return { "error": { "type": "sweep_table", "details": traceback.format_exc(limit=None) } } # Identify and preprocess short square sweeps try: ssq_sweep_numbers = categorize_iclamp_sweeps( data_set, ontology.short_square_names, sweep_qc_option=sweep_qc_option, specimen_id=specimen_id) ssq_sweeps, ssq_features = preprocess_short_square_sweeps( data_set, ssq_sweep_numbers) except Exception as detail: ssq_fail = True logging.warning( "Exception when preprocessing short square sweeps from specimen {:d}" .format(specimen_id)) logging.warning(detail) { "error": { "type": "sweep_table", "details": traceback.format_exc(limit=None) } } # Identify and preprocess ramp sweeps try: ramp_sweep_numbers = categorize_iclamp_sweeps( data_set, ontology.ramp_names, sweep_qc_option=sweep_qc_option, specimen_id=specimen_id) ramp_sweeps, ramp_features = preprocess_ramp_sweeps( data_set, ramp_sweep_numbers) except Exception as detail: ramp_fail = True logging.warning( "Exception when preprocessing ramp sweeps from specimen {:d}". format(specimen_id)) logging.warning(detail) { "error": { "type": "sweep_table", "details": traceback.format_exc(limit=None) } } # Calculate desired feature vectors result = {} try: (subthresh_hyperpol_dict, hyperpol_deflect_dict ) = fv.identify_subthreshold_hyperpol_with_amplitudes( lsq_features, lsq_sweeps) target_amps_for_step_subthresh = [-90, -70, -50, -30, -10] result["step_subthresh"] = fv.step_subthreshold( subthresh_hyperpol_dict, target_amps_for_step_subthresh, lsq_start, lsq_end, amp_tolerance=5) result["subthresh_norm"] = fv.subthresh_norm(subthresh_hyperpol_dict, hyperpol_deflect_dict, lsq_start, lsq_end) (subthresh_depol_dict, depol_deflect_dict) = fv.identify_subthreshold_depol_with_amplitudes( lsq_features, lsq_sweeps) result["subthresh_depol_norm"] = fv.subthresh_depol_norm( subthresh_depol_dict, depol_deflect_dict, lsq_start, lsq_end) isi_sweep, isi_sweep_spike_info = fv.identify_sweep_for_isi_shape( lsq_sweeps, lsq_features, lsq_end - lsq_start) result["isi_shape"] = fv.isi_shape(isi_sweep, isi_sweep_spike_info, lsq_end) if ssq_fail == False: # Calculate waveforms from each type of sweep spiking_ssq_sweep_list = [ ssq_sweeps.sweeps[swp_ind] for swp_ind in ssq_features["common_amp_sweeps"].index ] spiking_ssq_info_list = [ ssq_features["spikes_set"][swp_ind] for swp_ind in ssq_features["common_amp_sweeps"].index ] ssq_ap_v, ssq_ap_dv = fv.first_ap_vectors( spiking_ssq_sweep_list, spiking_ssq_info_list, target_sampling_rate=target_sampling_rate, window_length=ap_window_length, skip_clipped=True) else: ssq_ap_v, ssq_ap_dv = np.nan, np.nan rheo_ind = lsq_features["rheobase_sweep"].name sweep = lsq_sweeps.sweeps[rheo_ind] lsq_ap_v, lsq_ap_dv = fv.first_ap_vectors( [sweep], [lsq_features["spikes_set"][rheo_ind]], target_sampling_rate=target_sampling_rate, window_length=ap_window_length) if ramp_fail == False: spiking_ramp_sweep_list = [ ramp_sweeps.sweeps[swp_ind] for swp_ind in ramp_features["spiking_sweeps"].index ] spiking_ramp_info_list = [ ramp_features["spikes_set"][swp_ind] for swp_ind in ramp_features["spiking_sweeps"].index ] ramp_ap_v, ramp_ap_dv = fv.first_ap_vectors( spiking_ramp_sweep_list, spiking_ramp_info_list, target_sampling_rate=target_sampling_rate, window_length=ap_window_length, skip_clipped=True) else: ramp_ap_v, ramp_ap_dv = np.nan, np.nan if ramp_fail == True: ramp_ap_dv = np.copy(lsq_ap_dv) ramp_ap_v = np.copy(lsq_ap_v) if ssq_fail == True: ssq_ap_dv = np.copy(lsq_ap_dv) ssq_ap_v = np.copy(lsq_ap_v) # Combine so that differences can be assessed by analyses like sPCA result["first_ap_v"] = np.hstack([ssq_ap_v, lsq_ap_v, ramp_ap_v]) result["first_ap_dv"] = np.hstack([ssq_ap_dv, lsq_ap_dv, ramp_ap_dv]) target_amplitudes = np.arange(0, 120, 20) supra_info_list = fv.identify_suprathreshold_spike_info( lsq_features, target_amplitudes, shift=10) result["psth"] = fv.psth_vector(supra_info_list, lsq_start, lsq_end) result["inst_freq"] = fv.inst_freq_vector(supra_info_list, lsq_start, lsq_end) spike_feature_list = [ "upstroke_downstroke_ratio", "peak_v", "fast_trough_v", "threshold_v", "width", ] for feature in spike_feature_list: result["spiking_" + feature] = fv.spike_feature_vector( feature, supra_info_list, lsq_start, lsq_end) if feature == 'width': result["spiking_width"] = result["spiking_width"] / 2 except Exception as detail: logging.warning( "Exception when processing specimen {:d}".format(specimen_id)) logging.warning(detail) return { "error": { "type": "processing", "details": traceback.format_exc(limit=None) } } return result
def data_for_specimen_id( specimen_id, sweep_qc_option, data_source, ontology, ap_window_length=0.005, target_sampling_rate=50000, file_list=None, ): """ Extract feature vector from given cell identified by the specimen_id Parameters ---------- specimen_id : int cell identified sweep_qc_option : str see CollectFeatureVectorParameters input schema for details data_source: str see CollectFeatureVectorParameters input schema for details ontology : stimulus.StimulusOntology mapping of stimuli names to stimulus codes ap_window_length : float see CollectFeatureVectorParameters input schema for details target_sampling_rate : float sampling rate file_list : list of str nwbfile names Returns ------- dict : features for a given cell specimen_id """ logging.debug("specimen_id: {}".format(specimen_id)) # Find or retrieve NWB file and ancillary info and construct an AibsDataSet object data_set = su.dataset_for_specimen_id(specimen_id, data_source, ontology, file_list) if type(data_set) is dict and "error" in data_set: logging.warning( "Problem getting AibsDataSet for specimen {:d} from LIMS".format( specimen_id)) return data_set # Identify and preprocess long square sweeps try: lsq_sweep_numbers = su.categorize_iclamp_sweeps( data_set, ontology.long_square_names, sweep_qc_option=sweep_qc_option, specimen_id=specimen_id) (lsq_sweeps, lsq_features, _, lsq_start, lsq_end) = su.preprocess_long_square_sweeps(data_set, lsq_sweep_numbers) except Exception as detail: logging.warning( "Exception when preprocessing long square sweeps from specimen {:d}" .format(specimen_id)) logging.warning(detail) return { "error": { "type": "sweep_table", "details": traceback.format_exc(limit=None) } } # Identify and preprocess short square sweeps try: ssq_sweep_numbers = su.categorize_iclamp_sweeps( data_set, ontology.short_square_names, sweep_qc_option=sweep_qc_option, specimen_id=specimen_id) ssq_sweeps, ssq_features, _ = su.preprocess_short_square_sweeps( data_set, ssq_sweep_numbers) except Exception as detail: logging.warning( "Exception when preprocessing short square sweeps from specimen {:d}" .format(specimen_id)) logging.warning(detail) return { "error": { "type": "sweep_table", "details": traceback.format_exc(limit=None) } } # Identify and preprocess ramp sweeps try: ramp_sweep_numbers = su.categorize_iclamp_sweeps( data_set, ontology.ramp_names, sweep_qc_option=sweep_qc_option, specimen_id=specimen_id) ramp_sweeps, ramp_features, _ = su.preprocess_ramp_sweeps( data_set, ramp_sweep_numbers) except Exception as detail: logging.warning( "Exception when preprocessing ramp sweeps from specimen {:d}". format(specimen_id)) logging.warning(detail) return { "error": { "type": "sweep_table", "details": traceback.format_exc(limit=None) } } # Calculate desired feature vectors result = {} if data_source == "filesystem": result["id"] = [specimen_id] try: (subthresh_hyperpol_dict, hyperpol_deflect_dict ) = fv.identify_subthreshold_hyperpol_with_amplitudes( lsq_features, lsq_sweeps) target_amps_for_step_subthresh = [-90, -70, -50, -30, -10] result["step_subthresh"] = fv.step_subthreshold( subthresh_hyperpol_dict, target_amps_for_step_subthresh, lsq_start, lsq_end, amp_tolerance=5) result["subthresh_norm"] = fv.subthresh_norm(subthresh_hyperpol_dict, hyperpol_deflect_dict, lsq_start, lsq_end) (subthresh_depol_dict, depol_deflect_dict) = fv.identify_subthreshold_depol_with_amplitudes( lsq_features, lsq_sweeps) result["subthresh_depol_norm"] = fv.subthresh_depol_norm( subthresh_depol_dict, depol_deflect_dict, np.round(lsq_start, decimals=3), np.round(lsq_end, decimals=3)) isi_sweep, isi_sweep_spike_info = fv.identify_sweep_for_isi_shape( lsq_sweeps, lsq_features, lsq_end - lsq_start) result["isi_shape"] = fv.isi_shape(isi_sweep, isi_sweep_spike_info, lsq_end) # Calculate waveforms from each type of sweep spiking_ssq_sweep_list = [ ssq_sweeps.sweeps[swp_ind] for swp_ind in ssq_features["common_amp_sweeps"].index ] spiking_ssq_info_list = [ ssq_features["spikes_set"][swp_ind] for swp_ind in ssq_features["common_amp_sweeps"].index ] ssq_ap_v, ssq_ap_dv = fv.first_ap_vectors( spiking_ssq_sweep_list, spiking_ssq_info_list, target_sampling_rate=target_sampling_rate, window_length=ap_window_length, skip_clipped=True) rheo_ind = lsq_features["rheobase_sweep"].name sweep = lsq_sweeps.sweeps[rheo_ind] lsq_ap_v, lsq_ap_dv = fv.first_ap_vectors( [sweep], [lsq_features["spikes_set"][rheo_ind]], target_sampling_rate=target_sampling_rate, window_length=ap_window_length) spiking_ramp_sweep_list = [ ramp_sweeps.sweeps[swp_ind] for swp_ind in ramp_features["spiking_sweeps"].index ] spiking_ramp_info_list = [ ramp_features["spikes_set"][swp_ind] for swp_ind in ramp_features["spiking_sweeps"].index ] ramp_ap_v, ramp_ap_dv = fv.first_ap_vectors( spiking_ramp_sweep_list, spiking_ramp_info_list, target_sampling_rate=target_sampling_rate, window_length=ap_window_length, skip_clipped=True) # Combine so that differences can be assessed by analyses like sPCA result["first_ap_v"] = np.hstack([ssq_ap_v, lsq_ap_v, ramp_ap_v]) result["first_ap_dv"] = np.hstack([ssq_ap_dv, lsq_ap_dv, ramp_ap_dv]) target_amplitudes = np.arange(0, 120, 20) supra_info_list = fv.identify_suprathreshold_spike_info( lsq_features, target_amplitudes, shift=10) result["psth"] = fv.psth_vector(supra_info_list, lsq_start, lsq_end) result["inst_freq"] = fv.inst_freq_vector(supra_info_list, lsq_start, lsq_end) spike_feature_list = [ "upstroke_downstroke_ratio", "peak_v", "fast_trough_v", "threshold_v", "width", ] for feature in spike_feature_list: result["spiking_" + feature] = fv.spike_feature_vector( feature, supra_info_list, lsq_start, lsq_end) except Exception as detail: logging.warning( "Exception when processing specimen {:d}".format(specimen_id)) logging.warning(detail) return { "error": { "type": "processing", "details": traceback.format_exc(limit=None) } } return result