def test_iterative_refinements_dense(self): A = np.array([[1, 2, 3, 4, 0, 5, 0, 7], [0, 8, 7, 0, 1, 5, 9, 0], [1, 0, 0, 0, 0, 1, 2, 3]]) test_points = ([1, 2, 3, 4, 5, 6, 7, 8], [1, 10, 3, 0, 1, 6, 7, 8], [1, 0, 0, 0, 0, 1, 2, 3 + 1e-10]) for method in ("QRFactorization", ): Z, LS, _ = projections(A, method, orth_tol=1e-18, max_refin=10) for z in test_points: # Test if x is in the null_space x = Z.matvec(z) assert_array_almost_equal(A.dot(x), 0, decimal=14) # Test orthogonality assert_array_almost_equal(orthogonality(A, x), 0, decimal=16)
def test_dense_matrix(self): A = np.array([[1, 2, 3, 4, 0, 5, 0, 7], [0, 8, 7, 0, 1, 5, 9, 0], [1, 0, 0, 0, 0, 1, 2, 3]]) test_vectors = ([ -1.98931144, -1.56363389, -0.84115584, 2.2864762, 5.599141, 0.09286976, 1.37040802, -0.28145812 ], [ 697.92794044, -4091.65114008, -3327.42316335, 836.86906951, 99434.98929065, -1285.37653682, -4109.21503806, 2935.29289083 ]) test_expected_orth = (0, 0) for i in range(len(test_vectors)): x = test_vectors[i] orth = test_expected_orth[i] assert_array_almost_equal(orthogonality(A, x), orth)
def test_iterative_refinements_sparse(self): A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7], [0, 8, 7, 0, 1, 5, 9, 0], [1, 0, 0, 0, 0, 1, 2, 3]]) At_dense = A_dense.T A = csc_matrix(A_dense) test_points = ([1, 2, 3, 4, 5, 6, 7, 8], [1, 10, 3, 0, 1, 6, 7, 8], [1.12, 10, 0, 0, 100000, 6, 0.7, 8], [1, 0, 0, 0, 0, 1, 2, 3 + 1e-10]) for method in ("NormalEquation", "AugmentedSystem"): Z, LS, _ = projections(A, method, orth_tol=1e-18, max_refin=100) for z in test_points: # Test if x is in the null_space x = Z.matvec(z) assert_array_almost_equal(A.dot(x), 0, decimal=14) # Test orthogonality assert_array_almost_equal(orthogonality(A, x), 0, decimal=16)
def test_nullspace_and_least_squares_dense(self): A = np.array([[1, 2, 3, 4, 0, 5, 0, 7], [0, 8, 7, 0, 1, 5, 9, 0], [1, 0, 0, 0, 0, 1, 2, 3]]) At = A.T test_points = ([1, 2, 3, 4, 5, 6, 7, 8], [1, 10, 3, 0, 1, 6, 7, 8], [1.12, 10, 0, 0, 100000, 6, 0.7, 8]) for method in ("QRFactorization", ): Z, LS, _ = projections(A, method) for z in test_points: # Test if x is in the null_space x = Z.matvec(z) assert_array_almost_equal(A.dot(x), 0) # Test orthogonality assert_array_almost_equal(orthogonality(A, x), 0) # Test if x is the least square solution x = LS.matvec(z) x2 = np.linalg.lstsq(At, z)[0] assert_array_almost_equal(x, x2)
def test_nullspace_and_least_squares_sparse(self): A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7], [0, 8, 7, 0, 1, 5, 9, 0], [1, 0, 0, 0, 0, 1, 2, 3]]) At_dense = A_dense.T A = csc_matrix(A_dense) test_points = ([1, 2, 3, 4, 5, 6, 7, 8], [1, 10, 3, 0, 1, 6, 7, 8], [1.12, 10, 0, 0, 100000, 6, 0.7, 8]) for method in ("NormalEquation", "AugmentedSystem"): Z, LS, _ = projections(A, method) for z in test_points: # Test if x is in the null_space x = Z.matvec(z) assert_array_almost_equal(A.dot(x), 0) # Test orthogonality assert_array_almost_equal(orthogonality(A, x), 0) # Test if x is the least square solution x = LS.matvec(z) x2 = np.linalg.lstsq(At_dense, z)[0] assert_array_almost_equal(x, x2)