예제 #1
0
    def __init__(self,
                 on_interact=None,
                 output=None,
                 overwrite_previous_output=True,
                 feedback=False,
                 run=True,
                 action_kws={},
                 *args,
                 **kwargs):
        super().__init__(on_interact=on_interact,
                         output=output,
                         overwrite_previous_output=overwrite_previous_output,
                         feedback=feedback,
                         action_kws=action_kws)

        self.widget = widgets.ColorPicker(*args, **kwargs)

        if run:
            self.run()
예제 #2
0
 def updateSubsets(self):
     v = []
     for sset in self.gluemanager.data.subsets:
         kt = sset.label
         color = sset.style.color
         vc2 = widgets.Button(description=kt,
                              style=widgets.ButtonStyle(button_color=color),
                              disabled=False,
                              layout=widgets.Layout(
                                  min_width='min-content',
                                  max_width='min-content'))
         vc3 = widgets.Button(description="",
                              style=widgets.ButtonStyle(button_color=color),
                              icon='remove',
                              disabled=False,
                              layout=widgets.Layout(width='40px'))
         vc3.on_click(lambda event, this=self, value=[kt]: this.
                      deleteSubsetFromSelection(value))
         icon = 'eye'
         if hasattr(sset, 'disabled') and sset.disabled is True:
             icon = 'eye-slash'
         vc1 = widgets.Button(description="",
                              style=widgets.ButtonStyle(button_color=color),
                              icon=icon,
                              disabled=False,
                              layout=widgets.Layout(width='40px'),
                              value=True)
         vc1.on_click(lambda event, this=self, value=kt, vc=vc1: this.
                      disableComponentFromSelection(value, vc))
         vc4 = widgets.ColorPicker(description="",
                                   concise=True,
                                   value=sset.style.color,
                                   layout=widgets.Layout(width='40px',
                                                         min_width=''))
         vc4.observe(
             lambda change, this=self, value=kt, vc=[vc1, vc2, vc3]: this.
             changeSubsetColorFromSelection(value, change['new'], vc),
             "value")
         vv = widgets.HBox([vc1, vc2, vc3, vc4],
                           layout=widgets.Layout(width='auto'))
         v.append(vv)
     self.subsetsui.children = v
예제 #3
0
def orthoslices_3D(data, normalize=True, continuous_update=False, **kwargs):
    if not isnotebook:
        print('Function not suited for working outside of Jupyter notebooks!')
    else:
        get_ipython().magic('matplotlib notebook')
        get_ipython().magic('matplotlib notebook')

    e_range, x_range, y_range = data.shape
    dmin = np.amin(data)
    dmax = np.amax(data)

    w_e = widgets.IntSlider(value=e_range // 2,
                            min=0,
                            max=e_range - 1,
                            step=1,
                            description='Energy:',
                            disabled=False,
                            continuous_update=continuous_update,
                            orientation='horizontal',
                            readout=True,
                            readout_format='d')
    w_kx = widgets.IntSlider(value=x_range // 2,
                             min=0,
                             max=x_range - 1,
                             step=1,
                             description='kx:',
                             disabled=False,
                             continuous_update=continuous_update,
                             orientation='horizontal',
                             readout=True,
                             readout_format='d')
    w_ky = widgets.IntSlider(value=y_range // 2,
                             min=0,
                             max=y_range - 1,
                             step=1,
                             description='ky:',
                             disabled=False,
                             continuous_update=continuous_update,
                             orientation='horizontal',
                             readout=True,
                             readout_format='d')
    w_clim = widgets.FloatRangeSlider(value=[.1, .9],
                                      min=0,
                                      max=1,
                                      step=0.001,
                                      description='Contrast:',
                                      disabled=False,
                                      continuous_update=continuous_update,
                                      orientation='horizontal',
                                      readout=True,
                                      readout_format='.1f')
    w_cmap = widgets.Dropdown(options=cmaps,
                              value='terrain',
                              description='colormap:',
                              disabled=False)
    w_bin = widgets.BoundedIntText(value=1,
                                   min=1,
                                   max=min(data.shape),
                                   step=1,
                                   description='resample:',
                                   disabled=False)
    w_interpolate = widgets.Checkbox(value=True,
                                     description='Interpolate',
                                     disabled=False)
    w_grid = widgets.Checkbox(value=False, description='Grid', disabled=False)
    w_trackers = widgets.Checkbox(value=True,
                                  description='Trackers',
                                  disabled=False)
    w_trackercol = widgets.ColorPicker(concise=False,
                                       description='tracker line color',
                                       value='orange')

    ui_pos = widgets.HBox([w_e, w_kx, w_ky])
    ui_color = widgets.HBox([
        widgets.VBox([w_clim, w_cmap]),
        widgets.VBox([w_bin, w_interpolate, w_grid]),
        widgets.VBox([w_trackers, w_trackercol]),
    ])

    children = [ui_pos, ui_color]
    tab = widgets.Tab(children=children, )
    tab.set_title(0, 'data select')
    tab.set_title(1, 'colormap')

    figsize = kwargs.pop('figsize', (5, 5))
    fig = plt.figure(figsize=figsize, **kwargs)
    plt.tight_layout()
    # [left, bottom, width, height]
    # fig.locator_params(nbins=4)

    # cbar_ax = fig.add_axes([.05,.4,.05,4], xticklabels=[], yticklabels=[])
    # cbar_ax.yaxis.set_major_locator(plt.LinearLocator(5))

    img_ax = fig.add_axes([.15, .4, .4, .4], xticklabels=[], yticklabels=[])
    img_ax.xaxis.set_major_locator(plt.LinearLocator(5))
    img_ax.yaxis.set_major_locator(plt.LinearLocator(5))

    xproj_ax = fig.add_axes([.15, .1, .4, .28], xticklabels=[], yticklabels=[])
    xproj_ax.set_xlabel('$k_x$')
    xproj_ax.xaxis.set_major_locator(plt.LinearLocator(5))

    yproj_ax = fig.add_axes([.57, .4, .28, .4], xticklabels=[], yticklabels=[])
    yproj_ax.yaxis.set_label_position("right")
    yproj_ax.set_ylabel('$k_y$')
    yproj_ax.yaxis.set_major_locator(plt.LinearLocator(5))

    for ax in [img_ax, yproj_ax, xproj_ax]:  # ,cbar_ax]:
        ax.tick_params(axis="both",
                       direction="in",
                       bottom=True,
                       top=True,
                       left=True,
                       right=True,
                       which='both')

    clim_ = 0.01, .99

    e_img = norm_img(data[data.shape[0] // 2, :, :])
    y_img = norm_img(data[:, data.shape[1] // 2, :])
    x_img = norm_img(data[:, :, data.shape[2] // 2].T)
    e_plot = img_ax.imshow(
        e_img,
        cmap='terrain',
        aspect='auto',
        interpolation='gaussian',
        clim=clim_,
    )  # origin='lower')
    x_plot = yproj_ax.imshow(
        x_img,
        cmap='terrain',
        aspect='auto',
        interpolation='gaussian',
        clim=clim_,
    )  # origin='lower')
    y_plot = xproj_ax.imshow(
        y_img,
        cmap='terrain',
        aspect='auto',
        interpolation='gaussian',
        clim=clim_,
    )  # origin='lower')

    pe_x = img_ax.axvline(x_range / 2, c='orange')
    pe_y = img_ax.axhline(y_range / 2, c='orange')
    px_x = xproj_ax.axvline(x_range / 2, c='orange')
    px_e = xproj_ax.axhline(e_range / 2, c='orange')
    py_y = yproj_ax.axhline(y_range / 2, c='orange')
    py_e = yproj_ax.axvline(e_range / 2, c='orange')

    def update(e, kx, ky, clim, cmap, binning, interpolate, grid, trackers,
               trackerscol):
        if normalize:
            e_img = norm_img(data[e, :, :][::binning, ::binning])
            y_img = norm_img(data[:, ky, :][::binning, ::binning])
            x_img = norm_img(data[:, :, kx][::binning, ::binning])
        else:
            e_img = data[e, :, :][::binning, ::binning]
            y_img = data[:, ky, :][::binning, ::binning]
            x_img = data[:, :, kx][::binning, ::binning]
        for axis, plot, img in zip([img_ax, yproj_ax, xproj_ax],
                                   [e_plot, x_plot, y_plot],
                                   [e_img, x_img.T, y_img]):

            plot.set_data(img)
            plot.set_clim(clim)
            plot.set_cmap(cmap)
            axis.grid(grid)
            if interpolate:
                plot.set_interpolation('gaussian')
            else:
                plot.set_interpolation(None)
            if trackers:
                pe_x.set_xdata(kx)
                pe_x.set_color(trackerscol)
                pe_y.set_ydata(ky)
                pe_y.set_color(trackerscol)
                px_x.set_xdata(kx)
                px_x.set_color(trackerscol)
                px_e.set_ydata(e)
                px_e.set_color(trackerscol)
                py_y.set_ydata(ky)
                py_y.set_color(trackerscol)
                py_e.set_xdata(e)
                py_e.set_color(trackerscol)

    interactive_plot = interactive_output(
        update, {
            'e': w_e,
            'kx': w_kx,
            'ky': w_ky,
            'clim': w_clim,
            'cmap': w_cmap,
            'binning': w_bin,
            'interpolate': w_interpolate,
            'grid': w_grid,
            'trackers': w_trackers,
            'trackerscol': w_trackercol,
        })
    display(interactive_plot, tab)
예제 #4
0
def orthoslices_4D(data,
                   axis_order=['E', 'kx', 'ky', 'kz'],
                   normalize=True,
                   continuous_update=True,
                   **kwargs):
    if not isnotebook:
        raise EnvironmentError(
            'Function not suited for working outside of Jupyter notebooks!')
    else:
        get_ipython().magic('matplotlib notebook')
        get_ipython().magic('matplotlib notebook')

    assert len(
        data.shape
    ) == 4, 'Data should be 4-dimensional, but data has {} dimensions'.format(
        data.shape)

    # make controls for data slicers
    # slicers = []
    # for shape, name in zip(data.shape, axis_order):
    #     slicers.append(widgets.IntSlider(value=shape // 2,
    #                                      min=0,
    #                                      max=shape - 1,
    #                                      step=1,
    #                                      description=name,
    #                                      disabled=False,
    #                                      continuous_update=False,
    #                                      orientation='horizontal',
    #                                      readout=True,
    #                                      readout_format='d'
    #                                      ))

    e_range, x_range, y_range, z_range = data.shape

    w_e = widgets.IntSlider(value=e_range // 2,
                            min=0,
                            max=e_range - 1,
                            step=1,
                            description='Energy:',
                            disabled=False,
                            continuous_update=continuous_update,
                            orientation='horizontal',
                            readout=True,
                            readout_format='d')
    w_kx = widgets.IntSlider(value=x_range // 2,
                             min=0,
                             max=x_range - 1,
                             step=1,
                             description='kx:',
                             disabled=False,
                             continuous_update=continuous_update,
                             orientation='horizontal',
                             readout=True,
                             readout_format='d')
    w_ky = widgets.IntSlider(value=y_range // 2,
                             min=0,
                             max=y_range - 1,
                             step=1,
                             description='ky:',
                             disabled=False,
                             continuous_update=continuous_update,
                             orientation='horizontal',
                             readout=True,
                             readout_format='d')
    w_kz = widgets.IntSlider(value=z_range // 2,
                             min=0,
                             max=z_range - 1,
                             step=1,
                             description='kz:',
                             disabled=False,
                             continuous_update=continuous_update,
                             orientation='horizontal',
                             readout=True,
                             readout_format='d')

    slicers = [w_e, w_kx, w_ky, w_kz]
    ui_slicers = widgets.HBox(slicers)

    # make controls for graphics appearance
    w_clim = widgets.FloatRangeSlider(value=[.1, .9],
                                      min=0,
                                      max=1,
                                      step=0.001,
                                      description='Contrast:',
                                      disabled=False,
                                      continuous_update=True,
                                      orientation='horizontal',
                                      readout=True,
                                      readout_format='.1f')
    w_cmap = widgets.Dropdown(options=cmaps,
                              value='terrain',
                              description='colormap:',
                              disabled=False)
    w_bin = widgets.BoundedIntText(value=1,
                                   min=1,
                                   max=min(data.shape),
                                   step=1,
                                   description='resample:',
                                   disabled=False)
    w_interpolate = widgets.Checkbox(value=True,
                                     description='Interpolate',
                                     disabled=False)
    w_grid = widgets.Checkbox(value=False, description='Grid', disabled=False)
    w_trackers = widgets.Checkbox(value=True,
                                  description='Trackers',
                                  disabled=False)
    w_trackercol = widgets.ColorPicker(concise=False,
                                       description='tracker line color',
                                       value='orange')
    ui_color = widgets.HBox([
        widgets.VBox([w_clim, w_cmap]),
        widgets.VBox([w_bin, w_interpolate, w_grid]),
        widgets.VBox([w_trackers, w_trackercol]),
    ])

    tab = widgets.Tab(children=[ui_slicers, ui_color], )
    tab.set_title(0, 'Data slicing')
    tab.set_title(1, 'Graphics')

    figsize = kwargs.pop('figsize', (5, 5))
    fig = plt.figure(figsize=figsize, **kwargs)
    plt.tight_layout()

    img_ax = fig.add_axes([.15, .4, .4, .4], xticklabels=[], yticklabels=[])
    img_ax.xaxis.set_major_locator(plt.LinearLocator(5))
    img_ax.yaxis.set_major_locator(plt.LinearLocator(5))

    xproj_ax = fig.add_axes([.15, .1, .4, .28], xticklabels=[], yticklabels=[])
    xproj_ax.set_xlabel('$k_x$')
    xproj_ax.xaxis.set_major_locator(plt.LinearLocator(5))

    yproj_ax = fig.add_axes([.57, .4, .28, .4], xticklabels=[], yticklabels=[])
    yproj_ax.yaxis.set_label_position("right")
    yproj_ax.set_ylabel('$k_y$')
    yproj_ax.yaxis.set_major_locator(plt.LinearLocator(5))

    for ax in [img_ax, yproj_ax, xproj_ax]:  # ,cbar_ax]:
        ax.tick_params(axis="both",
                       direction="in",
                       bottom=True,
                       top=True,
                       left=True,
                       right=True,
                       which='both')

    clim_ = 0.01, .99

    e_img = norm_img(data[data.shape[0] // 2, :, :, data.shape[3] // 2])
    y_img = norm_img(data[:, data.shape[1] // 2, :, data.shape[3] // 2])
    x_img = norm_img(data[:, :, data.shape[2] // 2, data.shape[3] // 2].T)
    e_plot = img_ax.imshow(
        e_img,
        cmap='terrain',
        aspect='auto',
        interpolation='gaussian',
        clim=clim_,
    )  # origin='lower')
    x_plot = yproj_ax.imshow(
        x_img,
        cmap='terrain',
        aspect='auto',
        interpolation='gaussian',
        clim=clim_,
    )  # origin='lower')
    y_plot = xproj_ax.imshow(
        y_img,
        cmap='terrain',
        aspect='auto',
        interpolation='gaussian',
        clim=clim_,
    )  # origin='lower')

    pe_x = img_ax.axvline(x_range / 2, c='orange')
    pe_y = img_ax.axhline(y_range / 2, c='orange')
    px_x = xproj_ax.axvline(x_range / 2, c='orange')
    px_e = xproj_ax.axhline(e_range / 2, c='orange')
    py_y = yproj_ax.axhline(y_range / 2, c='orange')
    py_e = yproj_ax.axvline(e_range / 2, c='orange')

    def update(e, kx, ky, kz, clim, cmap, binning, interpolate, grid, trackers,
               trackerscol):
        if normalize:
            e_img = norm_img(data[e, :, :, kz][::binning, ::binning])
            y_img = norm_img(data[:, ky, :, kz][::binning, ::binning])
            x_img = norm_img(data[:, :, kx, kz][::binning, ::binning])
        else:
            e_img = data[e, :, :, kz][::binning, ::binning]
            y_img = data[:, ky, :, kz][::binning, ::binning]
            x_img = data[:, :, kx, kz][::binning, ::binning]
        for axis, plot, img in zip([img_ax, yproj_ax, xproj_ax],
                                   [e_plot, x_plot, y_plot],
                                   [e_img, x_img.T, y_img]):

            plot.set_data(img)
            plot.set_clim(clim)
            plot.set_cmap(cmap)
            axis.grid(grid)
            if interpolate:
                plot.set_interpolation('gaussian')
            else:
                plot.set_interpolation(None)
            if trackers:
                pe_x.set_xdata(kx)
                pe_x.set_color(trackerscol)
                pe_y.set_ydata(ky)
                pe_y.set_color(trackerscol)
                px_x.set_xdata(kx)
                px_x.set_color(trackerscol)
                px_e.set_ydata(e)
                px_e.set_color(trackerscol)
                py_y.set_ydata(ky)
                py_y.set_color(trackerscol)
                py_e.set_xdata(e)
                py_e.set_color(trackerscol)

    interactive_plot = interactive_output(
        update, {
            'e': w_e,
            'kx': w_kx,
            'ky': w_ky,
            'kz': w_kz,
            'clim': w_clim,
            'cmap': w_cmap,
            'binning': w_bin,
            'interpolate': w_interpolate,
            'grid': w_grid,
            'trackers': w_trackers,
            'trackerscol': w_trackercol,
        })
    display(interactive_plot, tab)
예제 #5
0
#Extract the renamed columns, and combine them into a new dataframe 
data_intensity = pd.DataFrame((bike_traffic_df1['Celleneuve'], bike_traffic_df2['Lattes2'],bike_traffic_df3['Berracasa'],bike_traffic_df4['Lavérune'],bike_traffic_df5['Lattes1'],bike_traffic_df6['Vieille_poste'],bike_traffic_df7['Gerhardt'],bike_traffic_df8['Tanneurs'],bike_traffic_df9['Delmas1'],bike_traffic_df10['Delmas2']))
data_intensity=data_intensity.T

#Indexing neww data by 'end_of-day' (time series)
data_intensity['startday'] = time_improved
data_intensity = data_intensity.set_index(['startday'])
print(data_intensity )


#%%
from ipywidgets import widgets
color_picker = widgets.ColorPicker(
    concise=True,
    description='Background color:',
    value='#efefef',
)
color_picker

color_buttons = widgets.ToggleButtons(
    options=['blue', 'red', 'green','black'],
    description='Color:',
)
color_buttons
#%%
def Intenity_visualisation( count_point ='latte1', day_month='d', efefef='red', start_date='2020-12-15', end_date='2021-04-01', color='black'):
    
  
    fig, ax = plt.subplots(1, 1, figsize=(12, 6))
예제 #6
0
    def createPlotsPanel(self):
        components = self.gluemanager.data.components
        pixel_component_ids = self.gluemanager.data.pixel_component_ids
        world_component_ids = self.gluemanager.data.world_component_ids

        v = []
        for k in components:
            if k not in world_component_ids:  #k not in pixel_component_ids and
                kt = str(k)
                color = self.gluemanager.data.get_component(k).color
                color = re.match(GlueManagerWidget.r, color)
                color = (int(color[1]), int(color[2]), int(color[3]))
                color = '#%02x%02x%02x' % color
                vc1 = widgets.Checkbox(value=False,
                                       tooltip=kt,
                                       indent=False,
                                       layout=widgets.Layout(width='40px'))
                vc2 = widgets.Button(
                    description=kt,
                    style=widgets.ButtonStyle(button_color=color),
                    disabled=False,
                    layout=widgets.Layout(min_width='min-content',
                                          max_width='min-content'))
                vc2.on_click(
                    lambda event, v=vc1: setattr(v, 'value', not v.value))
                vc3 = widgets.ColorPicker(description="",
                                          concise=True,
                                          value=color,
                                          layout=widgets.Layout(width='40px',
                                                                min_width=''))
                vc3.observe(lambda change, this=self, value=kt, vc=[vc2]: this.
                            changeComponentColorFromSelection(
                                value, change['new'], vc),
                            "value")

                vv = widgets.HBox([vc3, vc2, vc1],
                                  layout=widgets.Layout(width='auto'))
                v.append(vv)

        self.dimensions = widgets.HBox(v,
                                       layout=widgets.Layout(display='flex',
                                                             flex_flow='wrap'))

        cr = widgets.Button(description='Create new visualization',
                            disabled=False,
                            button_style='',
                            tooltip='',
                            layout=widgets.Layout(width='100%'))

        views = self.gluemanager.listPlots()

        dd = widgets.Dropdown(options=views,
                              value=views[0],
                              disabled=False,
                              layout=widgets.Layout(width='auto'))

        ss = widgets.Checkbox(
            value=False,
            description='Only subsets',
            disabled=False,
            indent=False,
        )

        tx = widgets.Text(value='',
                          placeholder='New_Visualization',
                          disabled=False,
                          layout=widgets.Layout(width='auto'))

        hb1 = widgets.HBox([ss, cr], layout=widgets.Layout(width='auto'))
        vb1 = widgets.VBox([self.dimensions, dd, tx, hb1],
                           layout=widgets.Layout(width='auto'))

        from IPython.display import display
        cr.on_click(lambda e, b=self.dimensions, this=self: this.createNewView(
            e, dd, b, tx, ss))

        return vb1
예제 #7
0
    def draw_workflow(self, start_end, workflow, name):
        assert isinstance(workflow, Workflow)

        start_s = start_end["seconds"]["start"]
        last_s = start_end["seconds"]["last"]
        start_t = start_end["time"]["start"]
        last_t = start_end["time"]["last"]

        # 1. get main stacked axis list
        main_stacked_results = []

        main_stacked_results.append(("BLANK", "#eeeeee", [
            (0, c.from_seconds) for c in chain.from_iterable(
                s.intervals for s in workflow.start_group.iter_nxtgroups())
        ]))

        for group in workflow.sort_topologically():
            _name = group.desc
            color = getcolor_byint(group.intervals[0], ignore_lr=True)
            main_stacked_results.append(
                (_name, color, [(c.from_seconds, c.to_seconds)
                                for c in group.intervals]))

        # 2. calc main_x_list from main_stacked_results
        types, colors, main_x_list, main_ys_list =\
                _generate_stackeddata(main_stacked_results)

        # 3. calc and check the arguments
        x_start_default = 0
        y_start_default = 0
        x_end_default = last_s * 1.05
        y_end_default = workflow.len_reqs

        def _interact(x, y, selects, color):
            with self._build_fig("workflowplot", name, figsize=(30, 6)) as fig:
                ax = fig.add_subplot(1, 1, 1)
                ax.set_xlabel("lapse (seconds)")
                ax.set_ylabel("requests")
                ax.set_xlim(x[0], x[1])
                ax.set_ylim(y[0], y[1])
                plot_colors = colors[:]
                if color:
                    for s in selects:
                        plot_colors[s] = color
                ax.annotate(start_t, xy=(0, 0), xytext=(0, 0))
                ax.annotate(last_t, xy=(last_s, 0), xytext=(last_s, 0))
                ax.plot([0, last_s], [0, 0], 'r*')

                ax.stackplot(main_x_list,
                             *main_ys_list,
                             colors=plot_colors,
                             edgecolor="black",
                             linewidth=.1)
                # ax.legend((mpatches.Patch(color=color) for color in colors), types)

        if self.out_path:
            _interact((x_start_default, x_end_default),
                      (y_start_default, y_end_default), [], None)
        else:
            from ipywidgets import widgets, interactive_output, fixed, Layout
            from IPython.display import display

            layout = Layout(width="99%")
            w_lapse = widgets.FloatRangeSlider(
                value=[x_start_default, x_end_default],
                min=x_start_default,
                max=x_end_default,
                step=0.0001,
                description='x-lapse:',
                continuous_update=False,
                readout_format='.4f',
                layout=layout)
            w_requests = widgets.IntRangeSlider(
                value=[y_start_default, y_end_default],
                min=y_start_default,
                max=y_end_default,
                description='y-requests:',
                continuous_update=False,
                layout=layout)
            w_range = widgets.VBox([w_lapse, w_requests])

            w_color = widgets.ColorPicker(concise=True,
                                          description='Highlight:',
                                          value='#ff40ff',
                                          layout=layout)
            options = [types[i] for i in range(1, len(types) - 1)]
            dedup = defaultdict(lambda: -1)
            for i, o in enumerate(options):
                dedup[o] += 1
                if dedup[o]:
                    options[i] = ("%s (%d)" % (options[i], dedup[o]))
            options = [(v, i + 1) for i, v in enumerate(options)]
            w_select = widgets.SelectMultiple(options=options,
                                              rows=min(10, len(options)),
                                              description='Steps:',
                                              layout=layout)
            w_highlight = widgets.VBox([w_color, w_select])

            w_tab = widgets.Tab()
            w_tab.children = [w_range, w_highlight]
            w_tab.set_title(0, "range")
            w_tab.set_title(1, "highlight")

            out = widgets.interactive_output(
                _interact, {
                    'x': w_lapse,
                    'y': w_requests,
                    'selects': w_select,
                    'color': w_color
                })
            display(w_tab, out)
예제 #8
0
 def make_colorpicker(color):
     return widgets.ColorPicker(concise=False,
                                description='Pick a color',
                                value=color,
                                disabled=False)
예제 #9
0
    def __init__(self, fig):
        super().__init__()
        self.fig = fig
        self.nSubs = sum(['xaxis' in i for i in fig['layout']])

        # Layout control widgets
        field_lay = widgets.Layout(max_height='40px', max_width='120px',
            min_height='30px', min_width='70px')
        fonts_names = ["Arial", "Balto", "Courier New", "Droid Sans",
                     "Droid Serif", "Droid Sans Mono", "Gravitas One",
                     "Old Standard TT", "Open Sans", "Overpass",
                     "PT Sans Narrow", "Raleway", "Times New Roman"]
        fonts_list = [(fnt, i+1) for i, fnt in enumerate(fonts_names)]
        tickoptions_names = ['inside', 'outside', '']
        tickoptions_list = [(v, i+1) for i, v in enumerate(tickoptions_names)]

        # General --------------------------------------------------------------
        chk_general_autosize = widgets.Checkbox(
            value=fig.layout.autosize, description='Autosize')
        self.txt_gen_width = widgets.FloatText(value=fig.layout.width, layout=field_lay)
        self.txt_gen_height = widgets.FloatText(value=fig.layout.height, layout=field_lay)
        hb_dims = HBox([widgets.Label('width/height:'), self.txt_gen_width, self.txt_gen_height])

        txt_fontsize = widgets.FloatText(value=fig.layout.font.size, layout=field_lay)
        drd_fontfamily = widgets.Dropdown(
            options=fonts_list, layout=field_lay,
            value=fonts_names.index(fig.layout.font.family)+1)
        drd_fontfamily.observe(self.set_gen_fontfamily, names='label')
        clr_font = widgets.ColorPicker(concise=True, value=fig.layout.font.color)
        hb_font = HBox([widgets.Label('font:'), txt_fontsize, drd_fontfamily, clr_font])

        clr_paperbg = widgets.ColorPicker(layout=field_lay,
            concise=True, value=fig.layout.paper_bgcolor,  description='paper_bgcolor')
        clr_plotbg = widgets.ColorPicker(layout=field_lay,
            concise=True, value=fig.layout.plot_bgcolor,  description='plot_bgcolor')
        hb_colorbg = HBox([clr_paperbg, clr_plotbg])

        drd_hovermode = widgets.Dropdown(
            options=[('Closest', 1), ('x', 2), ('y', 3), ('False', 4)],
            value=1, layout=field_lay)
        drd_hovermode.observe(self.set_gen_hovermode, names='label')
        hb_hovermode = HBox([widgets.Label('hovermode:'), drd_hovermode])

        vb_general = VBox([chk_general_autosize, hb_dims, hb_font,
                           hb_colorbg, hb_hovermode])
        controls_general = {
            'autosize': chk_general_autosize,
            'width': self.txt_gen_width,
            'height': self.txt_gen_height,
            'fontsize': txt_fontsize,
            'fontcolor': clr_font,
            'paperbgcolor': clr_paperbg,
            'plotbgcolor': clr_plotbg,
        }
        widgets.interactive_output(self.set_general, controls_general)


        # Title ----------------------------------------------------------------
        txt_titletext = widgets.Text(value=fig.layout.title.text, description='Text:')
        txt_titlefontsize = widgets.FloatText(value=fig.layout.titlefont.size, layout=field_lay)
        drd_titlefontfamily = widgets.Dropdown(
            options=fonts_list, layout=field_lay,
            value=fonts_names.index(fig.layout.titlefont.family)+1)
        drd_titlefontfamily.observe(self.set_gen_titlefontfamily, names='label')
        clr_titlefont = widgets.ColorPicker(concise=True, value=fig.layout.titlefont.color)
        hb_title = HBox([widgets.Label('font:'), txt_titlefontsize,
                         drd_titlefontfamily, clr_titlefont])
        vb_title = VBox([txt_titletext, hb_title])
        controls = {
            'title_text': txt_titletext,
            'title_fontsize': txt_titlefontsize,
            'title_fontcolor': clr_titlefont,
        }
        widgets.interactive_output(self.set_title, controls)

        # X axis ---------------------------------------------------------------
        chk_xaxis_visible = widgets.Checkbox(
            value=fig.layout.xaxis.visible, description='Visible')
        clr_xaxis = widgets.ColorPicker(concise=True, value=fig.layout.xaxis.color)
        hb0_xaxis = HBox([chk_xaxis_visible, clr_xaxis])

        txt_xaxis_fontsize = widgets.FloatText(value=fig.layout.xaxis.titlefont.size, layout=field_lay)
        drd_xaxis_fontfamily = widgets.Dropdown(
            options=fonts_list, layout=field_lay,
            value=fonts_names.index(fig.layout.xaxis.titlefont.family)+1)
        drd_xaxis_fontfamily.observe(self.set_xaxis_titlefontfamily, names='label')
        clr_xaxis_font = widgets.ColorPicker(concise=True, value=fig.layout.xaxis.titlefont.color)
        hb1_xaxis = HBox([widgets.Label('font:'), txt_xaxis_fontsize,
                          drd_xaxis_fontfamily, clr_xaxis_font])

        drd_xaxis_ticks = widgets.Dropdown(
            options=tickoptions_list, layout=field_lay,
            value=tickoptions_names.index(fig.layout.xaxis.ticks)+1)
        drd_xaxis_ticks.observe(self.set_xaxis_ticks, names='label')
        txt_xaxis_nticks = widgets.IntText(value=fig.layout.xaxis.nticks, layout=field_lay)
        hb2_xaxis = HBox([widgets.Label('ticks:'), drd_xaxis_ticks, txt_xaxis_nticks])

        txt_xaxis_ticklen = widgets.FloatText(value=fig.layout.xaxis.ticklen, layout=field_lay)
        txt_xaxis_tickwid = widgets.FloatText(value=fig.layout.xaxis.tickwidth, layout=field_lay)
        clr_xaxis_tick = widgets.ColorPicker(concise=True, value=fig.layout.xaxis.tickcolor)
        hb3_xaxis = HBox([widgets.Label('ticks len/wid:'), txt_xaxis_ticklen,
                          txt_xaxis_tickwid, clr_xaxis_tick])

        chk_xaxis_showticklabels = widgets.Checkbox(
            value=fig.layout.xaxis.showticklabels, description='Show tick labels')
        chk_xaxis_tickangle = widgets.Checkbox(
            value=not isinstance(fig.layout.xaxis.tickangle, (int, float)), description='auto')
        self.txt_xaxis_tickangle = widgets.FloatText(
            value=fig.layout.xaxis.tickangle if fig.layout.xaxis.tickangle != 'auto' else 0,
            layout=field_lay)
        hb4_xaxis = HBox([widgets.Label('ticks angle:'), chk_xaxis_tickangle,
                          self.txt_xaxis_tickangle])


        vb_xaxis = VBox([hb0_xaxis, hb1_xaxis, hb2_xaxis, hb3_xaxis,
                         chk_xaxis_showticklabels, hb4_xaxis])

        xaxis_controls = {
            'visible': chk_xaxis_visible,
            'color': clr_xaxis,
            'title_fontsize': txt_xaxis_fontsize,
            'title_fontcolor': clr_xaxis_font,
            'nticks': txt_xaxis_nticks,
            'ticklen': txt_xaxis_ticklen,
            'tickwid': txt_xaxis_tickwid,
            'tickcolor': clr_xaxis_tick,
            'showticklabels': chk_xaxis_showticklabels,
            'tickangleauto': chk_xaxis_tickangle,
            'tickangle': self.txt_xaxis_tickangle,
        }
        widgets.interactive_output(self.set_xaxis, xaxis_controls)

        # Y axis ---------------------------------------------------------------
        chk_yaxis_visible = widgets.Checkbox(
            value=fig.layout.yaxis.visible, description='Visible')
        clr_yaxis = widgets.ColorPicker(concise=True, value=fig.layout.yaxis.color)
        hb0_yaxis = HBox([chk_yaxis_visible, clr_yaxis])

        txt_yaxis_fontsize = widgets.FloatText(value=fig.layout.yaxis.titlefont.size, layout=field_lay)
        drd_yaxis_fontfamily = widgets.Dropdown(
            options=fonts_list, layout=field_lay,
            value=fonts_names.index(fig.layout.yaxis.titlefont.family)+1)
        drd_yaxis_fontfamily.observe(self.set_yaxis_titlefontfamily, names='label')
        clr_yaxis_font = widgets.ColorPicker(concise=True, value=fig.layout.yaxis.titlefont.color)
        hb1_yaxis = HBox([widgets.Label('font:'), txt_yaxis_fontsize,
                          drd_yaxis_fontfamily, clr_yaxis_font])

        drd_yaxis_ticks = widgets.Dropdown(
            options=tickoptions_list, layout=field_lay,
            value=tickoptions_names.index(fig.layout.yaxis.ticks)+1)
        drd_yaxis_ticks.observe(self.set_yaxis_ticks, names='label')
        txt_yaxis_nticks = widgets.IntText(value=fig.layout.yaxis.nticks, layout=field_lay)
        hb2_yaxis = HBox([widgets.Label('ticks:'), drd_yaxis_ticks, txt_yaxis_nticks])

        txt_yaxis_ticklen = widgets.FloatText(value=fig.layout.yaxis.ticklen, layout=field_lay)
        txt_yaxis_tickwid = widgets.FloatText(value=fig.layout.yaxis.tickwidth, layout=field_lay)
        clr_yaxis_tick = widgets.ColorPicker(concise=True, value=fig.layout.yaxis.tickcolor)
        hb3_yaxis = HBox([widgets.Label('ticks len/wid:'), txt_yaxis_ticklen,
                          txt_yaxis_tickwid, clr_yaxis_tick])

        chk_yaxis_showticklabels = widgets.Checkbox(
            value=fig.layout.yaxis.showticklabels, description='Show tick labels')
        chk_yaxis_tickangle = widgets.Checkbox(
            value=not isinstance(fig.layout.yaxis.tickangle, (int, float)), description='auto')
        self.txt_yaxis_tickangle = widgets.FloatText(
            value=fig.layout.yaxis.tickangle if fig.layout.yaxis.tickangle != 'auto' else 0,
            layout=field_lay)
        hb4_yaxis = HBox([widgets.Label('ticks angle:'), chk_yaxis_tickangle,
                          self.txt_yaxis_tickangle])


        vb_yaxis = VBox([hb0_yaxis, hb1_yaxis, hb2_yaxis, hb3_yaxis,
                         chk_yaxis_showticklabels, hb4_yaxis])

        yaxis_controls = {
            'visible': chk_yaxis_visible,
            'color': clr_yaxis,
            'title_fontsize': txt_yaxis_fontsize,
            'title_fontcolor': clr_yaxis_font,
            'nticks': txt_yaxis_nticks,
            'ticklen': txt_yaxis_ticklen,
            'tickwid': txt_yaxis_tickwid,
            'tickcolor': clr_yaxis_tick,
            'showticklabels': chk_yaxis_showticklabels,
            'tickangleauto': chk_yaxis_tickangle,
            'tickangle': self.txt_yaxis_tickangle,
        }
        widgets.interactive_output(self.set_yaxis, yaxis_controls)

        # Export ---------------------------------------------------------------
        

        # Organize buttons layout ----------------------------------------------
        self.tab_nest = widgets.Tab()
        self.tab_nest.children = [vb_general, vb_title, vb_xaxis, vb_yaxis]
        self.tab_nest.set_title(0, 'General')
        self.tab_nest.set_title(1, 'Title')
        self.tab_nest.set_title(2, 'X axis')
        self.tab_nest.set_title(3, 'Y axis')

        acc_all = widgets.Accordion(
            children=[self.tab_nest],
            selected_index=None
        )
        acc_all.set_title(0, 'Edit layout')

        self.children = [acc_all, fig]
예제 #10
0
def identifica_cor(frame):
    '''
    Segmenta o maior objeto cuja cor é parecida com cor_h (HUE da cor, no espaço HSV).
    '''

    colorpicker = widgets.ColorPicker(concise=False,
                                      description='Escolha uma cor',
                                      value='#01ff13',
                                      disabled=False)

    hsv1, hsv2 = aux.ranges(colorpicker.value)

    # No OpenCV, o canal H vai de 0 até 179, logo cores similares ao
    # vermelho puro (H=0) estão entre H=-8 e H=8.
    # Precisamos dividir o inRange em duas partes para fazer a detecção
    # do vermelho:
    # frame = cv2.flip(frame, -1) # flip 0: eixo x, 1: eixo y, -1: 2 eixos
    frame_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

    #cor_menor = np.array([52, 50, 50])
    #cor_maior = np.array([62, 255, 255])
    segmentado_cor = cv2.inRange(frame_hsv, hsv1, hsv2)

    #cor_menor = np.array([172, 50, 50])
    #cor_maior = np.array([180, 255, 255])
    #segmentado_cor += cv2.inRange(frame_hsv, cor_menor, cor_maior)

    # Note que a notacão do numpy encara as imagens como matriz, portanto o enderecamento é
    # linha, coluna ou (y,x)
    # Por isso na hora de montar a tupla com o centro precisamos inverter, porque
    centro = (frame.shape[1] // 2, frame.shape[0] // 2)

    def cross(img_rgb, point, color, width, length):
        cv2.line(img_rgb, (point[0] - length / 2, point[1]),
                 (point[0] + length / 2, point[1]), color, width, length)
        cv2.line(img_rgb, (point[0], point[1] - length / 2),
                 (point[0], point[1] + length / 2), color, width, length)

    # A operação MORPH_CLOSE fecha todos os buracos na máscara menores
    # que um quadrado 7x7. É muito útil para juntar vários
    # pequenos contornos muito próximos em um só.
    segmentado_cor = cv2.morphologyEx(segmentado_cor, cv2.MORPH_CLOSE,
                                      np.ones((7, 7)))

    # Encontramos os contornos na máscara e selecionamos o de maior área
    #contornos, arvore = cv2.findContours(segmentado_cor.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    contornos, arvore = cv2.findContours(segmentado_cor.copy(), cv2.RETR_TREE,
                                         cv2.CHAIN_APPROX_SIMPLE)

    maior_contorno = None
    maior_contorno_area = 0

    for cnt in contornos:
        area = cv2.contourArea(cnt)
        if area > maior_contorno_area:
            maior_contorno = cnt
            maior_contorno_area = area

    # Encontramos o centro do contorno fazendo a média de todos seus pontos.
    if not maior_contorno is None:
        cv2.drawContours(frame, [maior_contorno], -1, [0, 0, 255], 5)
        maior_contorno = np.reshape(maior_contorno,
                                    (maior_contorno.shape[0], 2))
        media = maior_contorno.mean(axis=0)
        media = media.astype(np.int32)
        cv2.circle(frame, (media[0], media[1]), 5, [255, 0, 0])
        cross(frame, centro, [0, 255, 0], 1, 17)
    else:
        media = (0, 0)

    # Representa a area e o centro do maior contorno no frame
    font = cv2.FONT_HERSHEY_COMPLEX_SMALL
    cv2.putText(frame, "{:d} {:d}".format(*media), (20, 100), 1, 4,
                (255, 255, 255), 2, cv2.LINE_AA)
    cv2.putText(frame, "{:0.1f}".format(maior_contorno_area), (20, 50), 1, 4,
                (255, 255, 255), 2, cv2.LINE_AA)

    # cv2.imshow('video', frame)
    cv2.imshow('seg', segmentado_cor)
    cv2.waitKey(1)

    return media, centro, maior_contorno_area