def __init__(self, num_classes=10): super(VGG_SMALL_1W1A_AHTANHLayer, self).__init__() self.num_classes = num_classes self.conv0 = nn.Conv2d(3, 128, kernel_size=3, padding=1, bias=False) self.bn0 = nn.BatchNorm2d(128) self.nonlinear0 = alphaHtanhLayer() self.conv1 = ir_1w32a.IRConv2d(128, 128, kernel_size=3, padding=1, bias=False) self.pooling = nn.MaxPool2d(kernel_size=2, stride=2) self.bn1 = nn.BatchNorm2d(128) self.nonlinear1 = alphaHtanhLayer() # self.nonlinear = nn.ReLU(inplace=True) # self.nonlinear = nn.Hardtanh(inplace=True) self.conv2 = ir_1w32a.IRConv2d(128, 256, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(256) self.nonlinear2 = alphaHtanhLayer() self.conv3 = ir_1w32a.IRConv2d(256, 256, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(256) self.nonlinear3 = alphaHtanhLayer() self.conv4 = ir_1w32a.IRConv2d(256, 512, kernel_size=3, padding=1, bias=False) self.bn4 = nn.BatchNorm2d(512) self.nonlinear4 = alphaHtanhLayer() self.conv5 = ir_1w32a.IRConv2d(512, 512, kernel_size=3, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(512) self.nonlinear5 = alphaHtanhLayer() self.fc = nn.Linear(512 * 4 * 4, self.num_classes) self._initialize_weights()
def conv3x3Binary(in_planes, out_planes, stride=1): "3x3 convolution with padding" return ir_1w32a.IRConv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def __init__(self, in_planes, planes, stride=1, option='A'): super(BasicBlock_1w32a, self).__init__() self.conv1 = ir_1w32a.IRConv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = ir_1w32a.IRConv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: if option == 'A': """ For CIFAR10 ResNet paper uses option A. """ self.shortcut = LambdaLayer(lambda x: F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0)) elif option == 'B': self.shortcut = nn.Sequential( ir_1w32a.IRConv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) )