예제 #1
0
def main():
    fname = iris.sample_data_path('air_temp.pp')
    temperature = iris.load_strict(fname)
    
    qplt.contourf(temperature, 15)
    iplt.gcm().drawcoastlines()
    plt.show()
예제 #2
0
 def test_y_fastest(self):
     cubes = iris.load(tests.get_data_path(("GRIB", "y_fastest", "y_fast.grib2")))
     self.assertCML(cubes, ("grib_load", "y_fastest.cml"))
     iplt.contourf(cubes[0])
     iplt.gcm(cubes[0]).drawcoastlines()
     plt.title("y changes fastest")
     self.check_graphic()
예제 #3
0
    def test_ij_directions(self):
        
        def old_compat_load(name):
            cube = iris.load(tests.get_data_path(('GRIB', 'ij_directions', name)))[0]
            return [cube]
        
        cubes = old_compat_load("ipos_jpos.grib2")
        self.assertCML(cubes, ("grib_load", "ipos_jpos.cml"))
        iplt.contourf(cubes[0])
        iplt.gcm(cubes[0]).drawcoastlines()
        plt.title("ipos_jpos cube")
        self.check_graphic()

        cubes = old_compat_load("ipos_jneg.grib2")
        self.assertCML(cubes, ("grib_load", "ipos_jneg.cml"))
        iplt.contourf(cubes[0])
        iplt.gcm(cubes[0]).drawcoastlines()
        plt.title("ipos_jneg cube")
        self.check_graphic()

        cubes = old_compat_load("ineg_jneg.grib2")
        self.assertCML(cubes, ("grib_load", "ineg_jneg.cml"))
        iplt.contourf(cubes[0])
        iplt.gcm(cubes[0]).drawcoastlines()
        plt.title("ineg_jneg cube")
        self.check_graphic()

        cubes = old_compat_load("ineg_jpos.grib2")
        self.assertCML(cubes, ("grib_load", "ineg_jpos.cml"))
        iplt.contourf(cubes[0])
        iplt.gcm(cubes[0]).drawcoastlines()
        plt.title("ineg_jpos cube")
        self.check_graphic()
def main():
    fname = iris.sample_data_path('rotated_pole.nc')
    temperature = iris.load_strict(fname)
    
    # Calculate the lat lon range and buffer it by 10 degrees
    lat_range, lon_range = iris.analysis.cartography.lat_lon_range(temperature)
    lat_range = lat_range[0] - 10, lat_range[1] + 10
    lon_range = lon_range[0] - 10, lon_range[1] + 10

    
    # Plot #1: Point plot showing data values & a colorbar
    plt.figure()
    iplt.map_setup(temperature, lat_range=lat_range, lon_range=lon_range)
    points = qplt.points(temperature, c=temperature.data)
    cb = plt.colorbar(points, orientation='horizontal')
    cb.set_label(temperature.units)
    iplt.gcm().drawcoastlines()
    plt.show()
    
    
    # Plot #2: Contourf of the point based data
    plt.figure()
    iplt.map_setup(temperature, lat_range=lat_range, lon_range=lon_range)
    qplt.contourf(temperature, 15)
    iplt.gcm().drawcoastlines()
    plt.show()
    
    
    # Plot #3: Contourf overlayed by coloured point data
    plt.figure()
    iplt.map_setup(temperature, lat_range=lat_range, lon_range=lon_range)
    qplt.contourf(temperature)
    iplt.points(temperature, c=temperature.data)
    iplt.gcm().drawcoastlines()
    plt.show()
    
    
    
    # For the purposes of this example, add some bounds to the latitude and longitude
    temperature.coord('grid_latitude').guess_bounds()
    temperature.coord('grid_longitude').guess_bounds()
    
    
    # Plot #4: Block plot
    plt.figure()
    iplt.map_setup(temperature, lat_range=lat_range, lon_range=lon_range)
    iplt.pcolormesh(temperature)
    iplt.gcm().bluemarble()
    iplt.gcm().drawcoastlines()
    plt.show()
def main():
    fname = iris.sample_data_path('rotated_pole.nc')
    temperature = iris.load_strict(fname)

    # Calculate the lat lon range and buffer it by 10 degrees
    lat_range, lon_range = iris.analysis.cartography.lat_lon_range(temperature)
    lat_range = lat_range[0] - 10, lat_range[1] + 10
    lon_range = lon_range[0] - 10, lon_range[1] + 10

    # Plot #1: Point plot showing data values & a colorbar
    plt.figure()
    iplt.map_setup(temperature, lat_range=lat_range, lon_range=lon_range)
    points = qplt.points(temperature, c=temperature.data)
    cb = plt.colorbar(points, orientation='horizontal')
    cb.set_label(temperature.units)
    iplt.gcm().drawcoastlines()
    plt.show()

    # Plot #2: Contourf of the point based data
    plt.figure()
    iplt.map_setup(temperature, lat_range=lat_range, lon_range=lon_range)
    qplt.contourf(temperature, 15)
    iplt.gcm().drawcoastlines()
    plt.show()

    # Plot #3: Contourf overlayed by coloured point data
    plt.figure()
    iplt.map_setup(temperature, lat_range=lat_range, lon_range=lon_range)
    qplt.contourf(temperature)
    iplt.points(temperature, c=temperature.data)
    iplt.gcm().drawcoastlines()
    plt.show()

    # For the purposes of this example, add some bounds to the latitude and longitude
    temperature.coord('grid_latitude').guess_bounds()
    temperature.coord('grid_longitude').guess_bounds()

    # Plot #4: Block plot
    plt.figure()
    iplt.map_setup(temperature, lat_range=lat_range, lon_range=lon_range)
    iplt.pcolormesh(temperature)
    iplt.gcm().bluemarble()
    iplt.gcm().drawcoastlines()
    plt.show()
예제 #6
0
    def test_simple(self):
        # First sub-plot
        plt.subplot(221)
        plt.title('Default')

        iplt.contourf(self.cube)

        map = iplt.gcm()
        map.drawcoastlines()

        # Second sub-plot
        plt.subplot(222)
        plt.title('Molleweide')

        iplt.map_setup(projection='moll', lon_0=120)
        iplt.contourf(self.cube)

        map = iplt.gcm()
        map.drawcoastlines()

        # Third sub-plot
        plt.subplot(223)
        plt.title('Native')

        iplt.map_setup(cube=self.cube)
        iplt.contourf(self.cube)

        map = iplt.gcm()
        map.drawcoastlines()

        # Fourth sub-plot
        plt.subplot(224)
        plt.title('Three/six level')

        iplt.contourf(self.cube, 3)
        iplt.contour(self.cube, 6)

        map = iplt.gcm()
        map.drawcoastlines()

        self.check_graphic()
예제 #7
0
def main():
    # Load the "total electron content" cube.
    filename = iris.sample_data_path('space_weather.nc')
    cube = iris.load_strict(filename, 'total electron content')

    # Explicitly mask negative electron content.
    cube.data = np.ma.masked_less(cube.data, 0)

    # Currently require to remove the multi-dimensional
    # latitude and longitude coordinates for Iris plotting.
    cube.remove_coord('latitude')
    cube.remove_coord('longitude')

    # Plot the cube using one hundred colour levels.
    qplt.contourf(cube, 100)
    plt.title('Total Electron Content')
    plt.xlabel('longitude / degrees')
    plt.ylabel('latitude / degrees')
    iplt.gcm().bluemarble(zorder=-1)
    iplt.gcm().drawcoastlines()
    plt.show()
예제 #8
0
def main():
    # Load the "total electron content" cube.
    filename = iris.sample_data_path('space_weather.nc')
    cube = iris.load_strict(filename, 'total electron content')

    # Explicitly mask negative electron content.
    cube.data = np.ma.masked_less(cube.data, 0)

    # Currently require to remove the multi-dimensional
    # latitude and longitude coordinates for Iris plotting.
    cube.remove_coord('latitude')
    cube.remove_coord('longitude')

    # Plot the cube using one hundred colour levels.
    qplt.contourf(cube, 100)
    plt.title('Total Electron Content')
    plt.xlabel('longitude / degrees')
    plt.ylabel('latitude / degrees')
    iplt.gcm().bluemarble(zorder=-1)
    iplt.gcm().drawcoastlines()
    plt.show()
import matplotlib.pyplot as plt

import iris
import iris.quickplot as qplt
import iris.plot as iplt

fname = iris.sample_data_path('air_temp.pp')
temperature_cube = iris.load_strict(fname)

# put bounds on the latitude and longitude coordinates
temperature_cube.coord('latitude').guess_bounds()
temperature_cube.coord('longitude').guess_bounds()

# Draw the contour with 25 levels
qplt.pcolormesh(temperature_cube)

# Get the map created by pcolormesh
current_map = iplt.gcm()

# Add coastlines to the map
current_map.drawcoastlines()

plt.show()
def main():
    # extract surface temperature cubes which have an ensemble member coordinate, adding appropriate lagged ensemble metadata
    surface_temp = iris.load_strict(
        iris.sample_data_path('GloSea4', 'ensemble_???.pp'),
        iris.Constraint('surface_temperature', realization=lambda value: True),
        callback=realization_metadata,
    )

    # ----------------------------------------------------------------------------------------------------------------
    # Plot #1: Ensemble postage stamps
    # ----------------------------------------------------------------------------------------------------------------

    # for the purposes of this example, take the last time element of the cube
    last_timestep = surface_temp[:, -1, :, :]

    # Make 50 evenly spaced levels which span the dataset
    contour_levels = numpy.linspace(numpy.min(last_timestep.data),
                                    numpy.max(last_timestep.data), 50)

    # Create a wider than normal figure to support our many plots
    plt.figure(figsize=(12, 6), dpi=100)

    # Also manually adjust the spacings which are used when creating subplots
    plt.gcf().subplots_adjust(hspace=0.05,
                              wspace=0.05,
                              top=0.95,
                              bottom=0.05,
                              left=0.075,
                              right=0.925)

    # iterate over all possible latitude longitude slices
    for cube in last_timestep.slices(['latitude', 'longitude']):

        # get the ensemble member number from the ensemble coordinate
        ens_member = cube.coord('realization').points[0]

        # plot the data in a 4x4 grid, with each plot's position in the grid being determined by ensemble member number
        # the special case for the 13th ensemble member is to have the plot at the bottom right
        if ens_member == 13:
            plt.subplot(4, 4, 16)
        else:
            plt.subplot(4, 4, ens_member + 1)

        cf = iplt.contourf(cube, contour_levels)

        # add coastlines
        m = iplt.gcm()
        m.drawcoastlines()

    # make an axes to put the shared colorbar in
    colorbar_axes = plt.gcf().add_axes([0.35, 0.1, 0.3, 0.05])
    colorbar = plt.colorbar(cf, colorbar_axes, orientation='horizontal')
    colorbar.set_label('%s' % last_timestep.units)

    # limit the colorbar to 8 tick marks
    import matplotlib.ticker
    colorbar.locator = matplotlib.ticker.MaxNLocator(8)
    colorbar.update_ticks()

    # get the time for the entire plot
    time_coord = last_timestep.coord('time')
    time = time_coord.units.num2date(time_coord.points[0])

    # set a global title for the postage stamps with the date formated by "monthname year"
    plt.suptitle('Surface temperature ensemble forecasts for %s' %
                 time.strftime('%B %Y'))

    iplt.show()

    # ----------------------------------------------------------------------------------------------------------------
    # Plot #2: ENSO plumes
    # ----------------------------------------------------------------------------------------------------------------

    # Nino 3.4 lies between: 170W and 120W, 5N and 5S, so define a constraint which matches this
    nino_3_4_constraint = iris.Constraint(
        longitude=lambda v: -170 + 360 <= v <= -120 + 360,
        latitude=lambda v: -5 <= v <= 5)

    nino_cube = surface_temp.extract(nino_3_4_constraint)

    # Subsetting a circular longitude coordinate always results in a circular coordinate, so set the coordinate to be non-circular
    nino_cube.coord('longitude').circular = False

    # Calculate the horizontal mean for the nino region
    mean = nino_cube.collapsed(['latitude', 'longitude'], iris.analysis.MEAN)

    # Calculate the ensemble mean of the horizontal mean. To do this, remove the "forecast_period" and
    # "forecast_reference_time" coordinates which span both "relalization" and "time".
    mean.remove_coord("forecast_reference_time")
    mean.remove_coord("forecast_period")
    ensemble_mean = mean.collapsed('realization', iris.analysis.MEAN)

    # take the ensemble mean from each ensemble member
    mean -= ensemble_mean.data

    plt.figure()

    for ensemble_member in mean.slices(['time']):
        # draw each ensemble member as a dashed line in black
        iplt.plot(ensemble_member, '--k', coords=['time'])

    plt.title('Mean temperature anomaly for ENSO 3.4 region')
    plt.xlabel('Time')
    plt.ylabel('Temperature anomaly / K')

    plt.show()
예제 #11
0
 def test_scatter(self):    
     iplt.points(self.cube) 
     map = iplt.gcm()
     map.drawcoastlines()
     self.check_graphic()
예제 #12
0
def main():
    # Load e1 and a1 using the callback to update the metadata
    e1 = iris.load_strict(iris.sample_data_path('E1.2098.pp'),
                           callback=cop_metadata_callback)
    a1b = iris.load_strict(iris.sample_data_path('A1B.2098.pp'),
                            callback=cop_metadata_callback)
    
    # Load the global average data and add an 'Experiment' coord it
    global_avg = iris.load_strict(iris.sample_data_path('pre-industrial.pp'))
    
    # Define evenly spaced contour levels: -2.5, -1.5, ... 15.5, 16.5 with the specific colours
    levels = numpy.arange(20) - 2.5
    red = numpy.array([0, 0, 221, 239, 229, 217, 239, 234, 228, 222, 205, 196, 161, 137, 116, 89, 77, 60, 51]) / 256.
    green = numpy.array([16, 217, 242, 243, 235, 225, 190, 160, 128, 87, 72, 59, 33, 21, 29, 30, 30, 29, 26]) / 256.
    blue = numpy.array([255, 255, 243, 169, 99, 51, 63, 37, 39, 21, 27, 23, 22, 26, 29, 28, 27, 25, 22]) / 256.
    
    # Put those colours into an array which can be passed to conourf as the specific colours for each level
    colors = numpy.array([red, green, blue]).T
    
    # Subtract the global 
    
    
    # Iterate over each latitude longitude slice for both e1 and a1b scenarios simultaneously
    for e1_slice, a1b_slice in itertools.izip(e1.slices(['latitude', 'longitude']), a1b.slices(['latitude', 'longitude'])):
    
        time_coord = a1b_slice.coord('time')
    
        # Calculate the difference from the mean
        delta_e1 = e1_slice - global_avg 
        delta_a1b = a1b_slice - global_avg
    
        # Make a wider than normal figure to house two maps side-by-side
        fig = plt.figure(figsize=(12, 5))
    
        # Get the time datetime from the coordinate
        time = time_coord.units.num2date(time_coord.points[0])
        # Set a title for the entire figure, giving the time in a nice format of "MonthName Year". Also, set the y value for the
        # title so that it is not tight to the top of the plot.
        fig.suptitle('Annual Temperature Predictions for ' + time.strftime("%Y"), y=0.9, fontsize=18)
    
        # Add the first subplot showing the E1 scenario
        plt.subplot(121)
        plt.title('HadGEM2 E1 Scenario',  fontsize=10)
        iplt.contourf(delta_e1, levels, colors=colors, linewidth=0, extend='both')
        current_map = iplt.gcm()
        current_map.drawcoastlines()
        # get the current axes' subplot for use later on
        plt1_ax = plt.gca()
        
        # Add the second subplot showing the A1B scenario
        plt.subplot(122)
        plt.title('HadGEM2 A1B-Image Scenario',  fontsize=10)
        contour_result = iplt.contourf(delta_a1b, levels, colors=colors, linewidth=0, extend='both')
        current_map = iplt.gcm()
        current_map.drawcoastlines()
        # get the current axes' subplot for use later on
        plt2_ax = plt.gca()
    
    
        # Now add a colourbar who's leftmost point is the same as the leftmost point of the left hand plot
        # and rightmost point is the rightmost point of the right hand plot
    
        # Get the positions of the 2nd plot and the left position of the 1st plot
        left, bottom, width, height = plt2_ax.get_position().bounds
        first_plot_left = plt1_ax.get_position().bounds[0]
    
        # the width of the colorbar should now be simple
        width = left - first_plot_left + width
    
        # Add axes to the figure, to place the colour bar 
        colorbar_axes = fig.add_axes([first_plot_left, bottom + 0.07, width, 0.03])
    
        # Add the colour bar
        cbar = plt.colorbar(contour_result, colorbar_axes, orientation='horizontal')
    
        # Label the colour bar and add ticks
        cbar.set_label(e1_slice.units)
        cbar.ax.tick_params(length=0)
    
        plt.show()
예제 #13
0
def main():
    # extract surface temperature cubes which have an ensemble member coordinate, adding appropriate lagged ensemble metadata
    surface_temp = iris.load_strict(iris.sample_data_path('GloSea4', 'ensemble_???.pp'),
                  iris.Constraint('surface_temperature', realization=lambda value: True),
                  callback=realization_metadata,
                  )

    # ----------------------------------------------------------------------------------------------------------------
    # Plot #1: Ensemble postage stamps
    # ----------------------------------------------------------------------------------------------------------------

    # for the purposes of this example, take the last time element of the cube
    last_timestep = surface_temp[:, -1, :, :]
   
    # Make 50 evenly spaced levels which span the dataset
    contour_levels = numpy.linspace(numpy.min(last_timestep.data), numpy.max(last_timestep.data), 50)
    
    # Create a wider than normal figure to support our many plots
    plt.figure(figsize=(12, 6), dpi=100)
    
    # Also manually adjust the spacings which are used when creating subplots
    plt.gcf().subplots_adjust(hspace=0.05, wspace=0.05, top=0.95, bottom=0.05, left=0.075, right=0.925)
    
    # iterate over all possible latitude longitude slices
    for cube in last_timestep.slices(['latitude', 'longitude']):
        
        # get the ensemble member number from the ensemble coordinate
        ens_member = cube.coord('realization').points[0]
    
        # plot the data in a 4x4 grid, with each plot's position in the grid being determined by ensemble member number
        # the special case for the 13th ensemble member is to have the plot at the bottom right
        if ens_member == 13:
            plt.subplot(4, 4, 16)
        else:
            plt.subplot(4, 4, ens_member+1)
    
        cf = iplt.contourf(cube, contour_levels)
    
        # add coastlines
        m = iplt.gcm()
        m.drawcoastlines()
    
    # make an axes to put the shared colorbar in
    colorbar_axes = plt.gcf().add_axes([0.35, 0.1, 0.3, 0.05])
    colorbar = plt.colorbar(cf, colorbar_axes, orientation='horizontal')
    colorbar.set_label('%s' % last_timestep.units)
    
    # limit the colorbar to 8 tick marks
    import matplotlib.ticker
    colorbar.locator = matplotlib.ticker.MaxNLocator(8)
    colorbar.update_ticks()
    
    # get the time for the entire plot
    time_coord = last_timestep.coord('time')
    time = time_coord.units.num2date(time_coord.points[0])
    
    # set a global title for the postage stamps with the date formated by "monthname year"
    plt.suptitle('Surface temperature ensemble forecasts for %s' % time.strftime('%B %Y'))
    
    iplt.show()


    # ---------------------------------------------------------------------------------------------------------------- 
    # Plot #2: ENSO plumes
    # ----------------------------------------------------------------------------------------------------------------
    
    # Nino 3.4 lies between: 170W and 120W, 5N and 5S, so define a constraint which matches this
    nino_3_4_constraint = iris.Constraint(longitude=lambda v: -170+360 <= v <= -120+360, latitude=lambda v: -5 <= v <= 5)
    
    nino_cube = surface_temp.extract(nino_3_4_constraint)

    # Subsetting a circular longitude coordinate always results in a circular coordinate, so set the coordinate to be non-circular
    nino_cube.coord('longitude').circular = False
    
    # Calculate the horizontal mean for the nino region
    mean = nino_cube.collapsed(['latitude', 'longitude'], iris.analysis.MEAN)
    
    # Calculate the ensemble mean of the horizontal mean. To do this, remove the "forecast_period" and
    # "forecast_reference_time" coordinates which span both "relalization" and "time".
    mean.remove_coord("forecast_reference_time")
    mean.remove_coord("forecast_period")
    ensemble_mean = mean.collapsed('realization', iris.analysis.MEAN)
    
    # take the ensemble mean from each ensemble member
    mean -= ensemble_mean.data

    plt.figure()
    
    for ensemble_member in mean.slices(['time']):
        # draw each ensemble member as a dashed line in black
        iplt.plot(ensemble_member, '--k', coords=['time'])
    
    plt.title('Mean temperature anomaly for ENSO 3.4 region')
    plt.xlabel('Time')
    plt.ylabel('Temperature anomaly / K')
    
    plt.show()
예제 #14
0
def main():
    # Load e1 and a1 using the callback to update the metadata
    e1 = iris.load_strict(iris.sample_data_path('E1.2098.pp'),
                          callback=cop_metadata_callback)
    a1b = iris.load_strict(iris.sample_data_path('A1B.2098.pp'),
                           callback=cop_metadata_callback)

    # Load the global average data and add an 'Experiment' coord it
    global_avg = iris.load_strict(iris.sample_data_path('pre-industrial.pp'))

    # Define evenly spaced contour levels: -2.5, -1.5, ... 15.5, 16.5 with the specific colours
    levels = numpy.arange(20) - 2.5
    red = numpy.array([
        0, 0, 221, 239, 229, 217, 239, 234, 228, 222, 205, 196, 161, 137, 116,
        89, 77, 60, 51
    ]) / 256.
    green = numpy.array([
        16, 217, 242, 243, 235, 225, 190, 160, 128, 87, 72, 59, 33, 21, 29, 30,
        30, 29, 26
    ]) / 256.
    blue = numpy.array([
        255, 255, 243, 169, 99, 51, 63, 37, 39, 21, 27, 23, 22, 26, 29, 28, 27,
        25, 22
    ]) / 256.

    # Put those colours into an array which can be passed to conourf as the specific colours for each level
    colors = numpy.array([red, green, blue]).T

    # Subtract the global

    # Iterate over each latitude longitude slice for both e1 and a1b scenarios simultaneously
    for e1_slice, a1b_slice in itertools.izip(
            e1.slices(['latitude', 'longitude']),
            a1b.slices(['latitude', 'longitude'])):

        time_coord = a1b_slice.coord('time')

        # Calculate the difference from the mean
        delta_e1 = e1_slice - global_avg
        delta_a1b = a1b_slice - global_avg

        # Make a wider than normal figure to house two maps side-by-side
        fig = plt.figure(figsize=(12, 5))

        # Get the time datetime from the coordinate
        time = time_coord.units.num2date(time_coord.points[0])
        # Set a title for the entire figure, giving the time in a nice format of "MonthName Year". Also, set the y value for the
        # title so that it is not tight to the top of the plot.
        fig.suptitle('Annual Temperature Predictions for ' +
                     time.strftime("%Y"),
                     y=0.9,
                     fontsize=18)

        # Add the first subplot showing the E1 scenario
        plt.subplot(121)
        plt.title('HadGEM2 E1 Scenario', fontsize=10)
        iplt.contourf(delta_e1,
                      levels,
                      colors=colors,
                      linewidth=0,
                      extend='both')
        current_map = iplt.gcm()
        current_map.drawcoastlines()
        # get the current axes' subplot for use later on
        plt1_ax = plt.gca()

        # Add the second subplot showing the A1B scenario
        plt.subplot(122)
        plt.title('HadGEM2 A1B-Image Scenario', fontsize=10)
        contour_result = iplt.contourf(delta_a1b,
                                       levels,
                                       colors=colors,
                                       linewidth=0,
                                       extend='both')
        current_map = iplt.gcm()
        current_map.drawcoastlines()
        # get the current axes' subplot for use later on
        plt2_ax = plt.gca()

        # Now add a colourbar who's leftmost point is the same as the leftmost point of the left hand plot
        # and rightmost point is the rightmost point of the right hand plot

        # Get the positions of the 2nd plot and the left position of the 1st plot
        left, bottom, width, height = plt2_ax.get_position().bounds
        first_plot_left = plt1_ax.get_position().bounds[0]

        # the width of the colorbar should now be simple
        width = left - first_plot_left + width

        # Add axes to the figure, to place the colour bar
        colorbar_axes = fig.add_axes(
            [first_plot_left, bottom + 0.07, width, 0.03])

        # Add the colour bar
        cbar = plt.colorbar(contour_result,
                            colorbar_axes,
                            orientation='horizontal')

        # Label the colour bar and add ticks
        cbar.set_label(e1_slice.units)
        cbar.ax.tick_params(length=0)

        plt.show()