예제 #1
0
파일: isa_test.py 프로젝트: mhahn0106/cisa
	def test_subspaces(self):
		isa = ISA(2, 4, 2)

		# simple sanity checks
		self.assertEqual(isa.subspaces()[0].dim, 2)
		self.assertEqual(isa.subspaces()[1].dim, 2)

		self.assertEqual(sys.getrefcount(isa.subspaces()), 1)
		self.assertEqual(sys.getrefcount(isa.subspaces()[0]), 1)
예제 #2
0
파일: isa_test.py 프로젝트: mhahn0106/cisa
    def test_subspaces(self):
        isa = ISA(2, 4, 2)

        # simple sanity checks
        self.assertEqual(isa.subspaces()[0].dim, 2)
        self.assertEqual(isa.subspaces()[1].dim, 2)

        self.assertEqual(sys.getrefcount(isa.subspaces()), 1)
        self.assertEqual(sys.getrefcount(isa.subspaces()[0]), 1)
예제 #3
0
파일: isa_test.py 프로젝트: mhahn0106/cisa
	def test_evaluate(self):
		isa1 = ISA(2)
		isa1.A = eye(2)

		subspaces = isa1.subspaces()
		for gsm in subspaces:
			gsm.scales = ones(gsm.num_scales)
		isa1.set_subspaces(subspaces)

		# equivalent overcomplete model
		isa2 = ISA(2, 4)
		A = copy(isa2.A)
		A[:, :2] = isa1.A / sqrt(2.)
		A[:, 2:] = isa1.A / sqrt(2.)
		isa2.A = A

		subspaces = isa2.subspaces()
		for gsm in subspaces:
			gsm.scales = ones(gsm.num_scales)
		isa2.set_subspaces(subspaces)

		data = isa1.sample(100)

		# the results should not depend on the parameters
		ll1 = isa1.evaluate(data)
		ll2 = isa2.evaluate(data)

		self.assertLess(abs(ll1 - ll2), 1e-5)

		isa1 = ISA(2)
		isa1.initialize()

		# equivalent overcomplete model
		isa2 = ISA(2, 4)

		isa2.set_subspaces(isa1.subspaces() * 2)
		A = isa2.basis()
		A[:, :2] = isa1.basis()
		A[:, 2:] = 0.
		isa2.set_basis(A)

		data = isa1.sample(100)

		params = isa2.default_parameters()
		params['ais']['num_iter'] = 100
		params['ais']['num_samples'] = 100

		ll1 = isa1.evaluate(data)
		ll2 = isa2.evaluate(data, params)

		self.assertLess(abs(ll1 - ll2), 0.1)
예제 #4
0
파일: isa_test.py 프로젝트: mhahn0106/cisa
    def test_evaluate(self):
        isa1 = ISA(2)
        isa1.A = eye(2)

        subspaces = isa1.subspaces()
        for gsm in subspaces:
            gsm.scales = ones(gsm.num_scales)
        isa1.set_subspaces(subspaces)

        # equivalent overcomplete model
        isa2 = ISA(2, 4)
        A = copy(isa2.A)
        A[:, :2] = isa1.A / sqrt(2.)
        A[:, 2:] = isa1.A / sqrt(2.)
        isa2.A = A

        subspaces = isa2.subspaces()
        for gsm in subspaces:
            gsm.scales = ones(gsm.num_scales)
        isa2.set_subspaces(subspaces)

        data = isa1.sample(100)

        # the results should not depend on the parameters
        ll1 = isa1.evaluate(data)
        ll2 = isa2.evaluate(data)

        self.assertLess(abs(ll1 - ll2), 1e-5)

        isa1 = ISA(2)
        isa1.initialize()

        # equivalent overcomplete model
        isa2 = ISA(2, 4)

        isa2.set_subspaces(isa1.subspaces() * 2)
        A = isa2.basis()
        A[:, :2] = isa1.basis()
        A[:, 2:] = 0.
        isa2.set_basis(A)

        data = isa1.sample(100)

        params = isa2.default_parameters()
        params['ais']['num_iter'] = 100
        params['ais']['num_samples'] = 100

        ll1 = isa1.evaluate(data)
        ll2 = isa2.evaluate(data, params)

        self.assertLess(abs(ll1 - ll2), 0.1)
예제 #5
0
파일: isa_test.py 프로젝트: mhahn0106/cisa
    def test_sample_scales(self):
        isa = ISA(2, 5, num_scales=4)

        # get a copy of subspaces
        subspaces = isa.subspaces()

        # replace scales
        for gsm in subspaces:
            gsm.scales = asarray([1., 2., 3., 4.])

        isa.set_subspaces(subspaces)

        samples = isa.sample_prior(100000)
        scales = isa.sample_scales(samples)

        # simple sanity checks
        self.assertEqual(scales.shape[0], isa.num_hiddens)
        self.assertEqual(scales.shape[1], samples.shape[1])

        priors = mean(
            abs(scales.flatten() - asarray([[1., 2., 3., 4.]]).T) < 0.5, 1)

        # prior probabilities of scales should be equal and sum up to one
        self.assertLess(max(abs(priors - 1. / subspaces[0].num_scales)), 0.01)
        self.assertLess(abs(sum(priors) - 1.), 1e-10)
예제 #6
0
파일: isa_test.py 프로젝트: mhahn0106/cisa
	def test_merge(self):
		isa1 = ISA(5, ssize=2)
		isa2 = ISA(5)

		isa1.initialize()
		isa1.orthogonalize()

		isa2.initialize()
		isa2.A = isa1.A

		params = isa2.default_parameters()
		params['train_basis'] = False
		params['merge_subspaces'] = True
		params['merge']['verbosity'] = 0

		isa2.train(isa1.sample(10000), params)

		ssizes1 = [gsm.dim for gsm in isa1.subspaces()]
		ssizes2 = [gsm.dim for gsm in isa2.subspaces()]

		# algorithm should be able to recover subspace sizes
		self.assertTrue(all(sort(ssizes1) == sort(ssizes2)))
예제 #7
0
파일: isa_test.py 프로젝트: mhahn0106/cisa
    def test_merge(self):
        isa1 = ISA(5, ssize=2)
        isa2 = ISA(5)

        isa1.initialize()
        isa1.orthogonalize()

        isa2.initialize()
        isa2.A = isa1.A

        params = isa2.default_parameters()
        params['train_basis'] = False
        params['merge_subspaces'] = True
        params['merge']['verbosity'] = 0

        isa2.train(isa1.sample(10000), params)

        ssizes1 = [gsm.dim for gsm in isa1.subspaces()]
        ssizes2 = [gsm.dim for gsm in isa2.subspaces()]

        # algorithm should be able to recover subspace sizes
        self.assertTrue(all(sort(ssizes1) == sort(ssizes2)))
예제 #8
0
파일: isa_test.py 프로젝트: mhahn0106/cisa
	def test_pickle(self):
		isa0 = ISA(4, 16, ssize=3)
		isa0.set_hidden_states(randn(16, 100))

		tmp_file = mkstemp()[1]

		# store model
		with open(tmp_file, 'w') as handle:
			dump({'isa': isa0}, handle)

		# load model
		with open(tmp_file) as handle:
			isa1 = load(handle)['isa']

		# make sure parameters haven't changed
		self.assertEqual(isa0.num_visibles, isa1.num_visibles)
		self.assertEqual(isa0.num_hiddens, isa1.num_hiddens)
		self.assertLess(max(abs(isa0.A - isa1.A)), 1e-20)
		self.assertLess(max(abs(isa0.hidden_states() - isa1.hidden_states())), 1e-20)
		self.assertLess(max(abs(isa0.subspaces()[1].scales - isa1.subspaces()[1].scales)), 1e-20)
예제 #9
0
파일: isa_test.py 프로젝트: mhahn0106/cisa
    def test_pickle(self):
        isa0 = ISA(4, 16, ssize=3)
        isa0.set_hidden_states(randn(16, 100))

        tmp_file = mkstemp()[1]

        # store model
        with open(tmp_file, 'w') as handle:
            dump({'isa': isa0}, handle)

        # load model
        with open(tmp_file) as handle:
            isa1 = load(handle)['isa']

        # make sure parameters haven't changed
        self.assertEqual(isa0.num_visibles, isa1.num_visibles)
        self.assertEqual(isa0.num_hiddens, isa1.num_hiddens)
        self.assertLess(max(abs(isa0.A - isa1.A)), 1e-20)
        self.assertLess(max(abs(isa0.hidden_states() - isa1.hidden_states())),
                        1e-20)
        self.assertLess(
            max(abs(isa0.subspaces()[1].scales - isa1.subspaces()[1].scales)),
            1e-20)
예제 #10
0
파일: isa_test.py 프로젝트: mhahn0106/cisa
	def test_sample_scales(self):
		isa = ISA(2, 5, num_scales=4)

		# get a copy of subspaces
		subspaces = isa.subspaces()

		# replace scales
		for gsm in subspaces:
			gsm.scales = asarray([1., 2., 3., 4.])

		isa.set_subspaces(subspaces)

		samples = isa.sample_prior(100000)
		scales = isa.sample_scales(samples)

		# simple sanity checks
		self.assertEqual(scales.shape[0], isa.num_hiddens)
		self.assertEqual(scales.shape[1], samples.shape[1])

		priors = mean(abs(scales.flatten() - asarray([[1., 2., 3., 4.]]).T) < 0.5, 1)

		# prior probabilities of scales should be equal and sum up to one
		self.assertLess(max(abs(priors - 1. / subspaces[0].num_scales)), 0.01)
		self.assertLess(abs(sum(priors) - 1.), 1e-10)