예제 #1
0
def isotonic_experiment(muscle_stimulation, loads,
                        time_param=TimeParameters()):

    # Muscle
    muscle_parameters = MuscleParameters()
    muscle = Muscle(muscle_parameters)

    # Initial conditions
    x0 = [0] * StatesIsotonic.NB_STATES.value
    x0[StatesIsotonic.STIMULATION.value] = 0.
    x0[StatesIsotonic.L_CE.value] = muscle.L_OPT
    x0[StatesIsotonic.LOAD_POS.value] = muscle.L_OPT + muscle.L_SLACK
    x0[StatesIsotonic.LOAD_SPEED.value] = 0.

    # Containers
    v_ce = []
    tendon_force = []

    # Integration
    pylog.info("Running the experiments (this might take a while)...")
    for load in loads:

        # New load definition
        mass_parameters = MassParameters()
        mass_parameters.mass = load
        mass = Mass(mass_parameters)

        # System definition
        sys = IsotonicMuscleSystem()
        sys.add_muscle(muscle)
        sys.add_mass(mass)

        result = sys.integrate(x0=x0,
                               time=time_param.times,
                               time_step=time_param.t_step,
                               time_stabilize=time_param.t_stabilize,
                               stimulation=muscle_stimulation,
                               load=load)

        # Result processing
        if result.l_mtc[-1] > x0[StatesIsotonic.LOAD_POS.value]:
            # Extension
            index = result.v_ce.argmax()
            v_ce.append(result.v_ce.max())
            tendon_force.append(result.tendon_force[index])
        else:
            # Contraction
            index = result.v_ce.argmin()
            v_ce.append(result.v_ce.min())
            tendon_force.append(result.tendon_force[index])

    return v_ce, tendon_force
예제 #2
0
def plotVceLoad(load,ms=[1.]):
    # Defination of muscles
    muscle_parameters = MuscleParameters()
    mass_parameters = MassParameters()
    # Create muscle object
    muscle = Muscle(muscle_parameters)
    # Create mass object
    mass = Mass(mass_parameters)
    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()
    # Add the muscle to the system
    sys.add_muscle(muscle)
    # Add the mass to the system
    sys.add_mass(mass)
    
    # Evalute for a single load
    #load = 100.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT,
          sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)
    
    plt.figure('Max Velocity-Tension curve')
    for s in ms:
        muscle_stimulation = s
        v = []
        for l in load:
            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   time_stabilize=time_stabilize,
                                   stimulation=muscle_stimulation,
                                   load=l)
            # Find the max or min speed achieved
            i = np.argmax(np.abs(result.v_ce))
            v.append(-result.v_ce[i])
            #if result[i].l_mtc < sys.muscle.L_OPT + sys.muscle.L_SLACK:
        
        for i in range(len(v)):
            if i >= 1 and v[i]*v[i-1] <=0:
                plt.plot(load[i],v[i],color='green', marker='x', linestyle='dashed',
                         linewidth=2, markersize=12)
        plt.plot(load, v,label='maximal speed\nMuscle stimulation: {}'.format(s))
        plt.legend()
        plt.title('Isotonic muscle experiment\nMax Velocity-Tension curve')
        plt.xlabel('load [kg]')
        plt.ylabel('CE speed [m/s]') 
        #axes = plt.gca()
        #axes.set_xlim([0.05,0.2])
        #axes.set_ylim([0,1700])
    plt.grid()
예제 #3
0
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single load
    load = 100.

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT,
          sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration
    result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           time_stabilize=time_stabilize,
                           stimulation=muscle_stimulation,
                           load=load)

    # Plotting
    plt.figure('Isotonic muscle experiment')
    plt.plot(result.time, result.v_ce)
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contractilve velocity')
    plt.grid()
    
    # Run 1.d
    load = np.arange(0,1000,20)
    plotVceLoad(load,[0.1,0.5,1])
def exercise1f():
    """ Exercise 1f

    What happens to the force-velocity relationship when the stimulation is varied
    between [0 - 1]?"""
    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    # Instantiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evaluate for a single load
    load = 100.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 1.25
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # ---------------------------------------------
    # maximum force over stimulation
    # ---------------------------------------------

    # Evaluate for different muscle stimulation
    muscle_stimulation = np.arange(0, 1.1, 0.1)
    max_active_force = []
    max_passive_force = []
    max_sum_force = []

    # Begin plotting
    for s in muscle_stimulation:
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=s,
                               load=load)

        if abs(min(result.active_force)) > max(result.active_force):
            max_active_force.append(min(result.active_force))
        else:
            max_active_force.append(max(result.active_force))

        if abs(min(result.passive_force)) > max(result.passive_force):
            max_passive_force.append(min(result.passive_force))
        else:
            max_passive_force.append(max(result.passive_force))

        max_sum_force.append(max_active_force[-1] + max_passive_force[-1])

    plt.figure('Isotonic muscle active force - stimulation [0, 1]')

    plt.plot(muscle_stimulation,
             max_active_force,
             label='maximum active force')
    plt.plot(muscle_stimulation,
             max_passive_force,
             label='maximum passive force')
    plt.plot(muscle_stimulation, max_sum_force, label='maximum sum force')

    plt.xlabel('Stimulation [-]')
    plt.ylabel('Muscle sum forces [N]')
    plt.legend(loc='upper right')
    plt.grid()

    # ---------------------------------------------
    # force - velocity over stimulation
    # ---------------------------------------------
    muscle_stimulation = np.arange(0, 1.1, 0.1)

    # Begin plotting
    for s in muscle_stimulation:
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=s,
                               load=load)

        plt.figure('Isotonic muscle active force - velocity')
        plt.plot(result.v_ce[200:-1],
                 result.active_force[200:-1],
                 label='stimulation {:0.1f}'.format(s))

        plt.figure('Isotonic muscle passive force - velocity')
        plt.plot(result.v_ce[200:-1],
                 result.passive_force[200:-1],
                 label='stimulation {:0.1f}'.format(s))

        plt.figure('Isotonic muscle sum forces - velocity')
        plt.plot(result.v_ce[200:-1],
                 result.active_force[200:-1] + result.passive_force[200:-1],
                 label='stimulation {:0.1f}'.format(s))

    plt.figure('Isotonic muscle active force - velocity')
    plt.xlabel('Velocity contractile element [m/s]')
    plt.ylabel('Active force [N]')
    plt.legend(loc='upper right')
    plt.grid()

    plt.figure('Isotonic muscle passive force - velocity')
    plt.xlabel('Velocity contractile element [m/s]')
    plt.ylabel('Passive force [N]')
    plt.legend(loc='upper right')
    plt.grid()

    plt.figure('Isotonic muscle sum forces - velocity')
    plt.xlabel('Velocity contractile element [m/s]')
    plt.ylabel('Sum forces [N]')
    plt.legend(loc='upper right')
    plt.grid()

    # ---------------------------------------------
    # Plot velocity - tension relation
    # ---------------------------------------------
    muscle_stimulation = np.arange(0, 1.1, 0.25)
    load = np.arange(5, 1500, 20)
    plt.figure('Velocity - Tension')

    # Begin plotting
    for s in muscle_stimulation:
        (max_vce, active_force) = ex1d_for(sys, x0, time, time_step,
                                           time_stabilize, s, load, False)
        plt.plot(load, max_vce, label="stimulation {:0.1f}".format(s))

    plt.title('Velocity [m/s] - Load [N]')
    plt.xlabel('Load [N]')
    plt.ylabel('Velocity [m/s]')
    plt.legend(loc='lower right')
    plt.grid()
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evaluate for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 1.25
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # Set max_vce
    max_vce = []

    # ---------------------------------------------
    # Small load experiment
    # ---------------------------------------------
    load_table_small = [5, 10, 20, 50, 100]

    # Begin plotting
    plt.figure('Isotonic muscle experiment - load [10, 200] [N]')
    max_vce_small = ex1d_for(sys, x0, time, time_step, time_stabilize,
                             muscle_stimulation, load_table_small, False)

    plt.title('Isotonic muscle experiment - load [5, 140] [N]')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contractile velocity [m/s]')
    plt.legend(loc='upper right')
    plt.grid()

    # ---------------------------------------------
    # Big load experiment
    # ---------------------------------------------
    load_table_big = [150, 200, 220, 250, 500, 1000, 1500]

    # Begin plotting
    plt.figure('Isotonic muscle experiment - load [150, 1500] [N]')
    max_vce += ex1d_for(sys, x0, time, time_step, time_stabilize,
                        muscle_stimulation, load_table_big, True)

    plt.title('Isotonic muscle experiment - load [150, 1500] [N]')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contractile velocity [m/s]')
    plt.legend(loc='upper right')
    plt.grid()

    # ---------------------------------------------
    # Plot velocity - tension relation
    # ---------------------------------------------
    load = np.arange(5, 2500, 200)
    (max_vce, active_force) = ex1d_for(sys, x0, time, time_step,
                                       time_stabilize, muscle_stimulation,
                                       load, False)

    fig = plt.figure('Velocity - Tension')
    ax = fig.add_subplot(111)

    # Plot comments and line at 0 value
    min_val = 0.0
    if min(map(abs, max_vce)) not in max_vce:
        min_val = -min(map(abs, max_vce))
    else:
        min_val = min(map(abs, max_vce))

    xy = (load[max_vce.index(min_val)], min_val)
    xytext = (load[max_vce.index(min_val)] + 50, min_val)
    ax.annotate('load = {:0.1f}'.format(152.2), xy=xy, xytext=xytext)

    plt.title('Velocity [m/s] - Tension [N]')
    plt.xlabel('Tension [N]')
    plt.ylabel('Velocity [m/s]')
    plt.grid()

    plt.plot(load, max_vce)
    plt.plot(load[max_vce.index(min_val)], min_val, 'o')
예제 #6
0
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single load
    load = 100.

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]

    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.5
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    loads = np.arange(20, 351, 10)

    velocities = []

    for index, load in enumerate(loads):

        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=muscle_stimulation,
                               load=load)

        if (result.l_mtc[-1] < sys.muscle.L_OPT + sys.muscle.L_SLACK):
            velocities.append(np.max(result.v_ce))
            print('max')
        else:
            velocities.append(np.min(result.v_ce))
            print('min')

    #Muscle contracile Velocity - Tension (load) relationship

    plt.figure('Isotonic muscle experiment')
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Muscle Contractile Velocity [m/s]')
    plt.ylabel('Tension (load) [N]')
    plt.plot(velocities, loads)
    plt.grid()

    #For different stimulations 1.f

    muscle_stimulation = np.arange(0, 1.1, 0.2)
    plt.figure('Isotonic muscle exp with different stimulations')
    plt.title('Isotonic muscle experiment with different stimulations')

    for stim in muscle_stimulation:
        velocities = []
        for index, load in enumerate(loads):
            #    Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   time_stabilize=time_stabilize,
                                   stimulation=stim,
                                   load=load)

            if (result.l_mtc[-1] < sys.muscle.L_OPT + sys.muscle.L_SLACK):
                velocities.append(np.max(result.v_ce))
            else:
                velocities.append(np.min(result.v_ce))
        plt.xlabel('Muscle Contractile Velocity [m/s]')
        plt.ylabel('Tension (load) [N]')
        plt.plot(velocities, loads)

    plt.legend(('0', '0.2', '0.4', '0.6', '0.8', '1.0'))
    plt.grid()
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.l_opt # To get the muscle optimal length

    # Evalute for a single load
    load = 250 / 9.81

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.0

    # Set the initial condition
    x0 = [0.0, sys.muscle.l_opt, sys.muscle.l_opt + sys.muscle.l_slack, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.4
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration
    result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           time_stabilize=time_stabilize,
                           stimulation=muscle_stimulation,
                           load=load)

    # Plotting
    plt.figure('Isotonic muscle experiment')
    plt.plot(result.time, result.v_ce)
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contracticle velocity [lopts/s]')
    plt.grid()

    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ### code for 1d
    pylog.info(
        "1d. relationship between muscle contractile velocity and external load"
    )

    load_start = 1
    load_stop = 501
    load_step = 10
    load_range = np.arange(load_start, load_stop, load_step)

    muscle_stimulation = 1.0

    vels = []
    tendon_forces = []
    active_forces = []
    passive_forces = []
    total_forces = []

    for temp_load in load_range:
        temp_result = sys.integrate(x0=x0,
                                    time=time,
                                    time_step=time_step,
                                    time_stabilize=time_stabilize,
                                    stimulation=muscle_stimulation,
                                    load=temp_load)

        temp_tendon_force = temp_result.tendon_force[-1]
        temp_active_force = temp_result.active_force[-1]
        temp_passive_force = temp_result.passive_force[-1]
        temp_total_force = temp_active_force + temp_passive_force

        tendon_forces = tendon_forces + [temp_tendon_force]
        active_forces = active_forces + [temp_active_force]
        passive_forces = passive_forces + [temp_passive_force]
        total_forces = total_forces + [temp_total_force]

        temp_l_mtu = temp_result.l_mtu[-1]

        if temp_l_mtu < sys.muscle.l_opt + sys.muscle.l_slack:
            vels = vels + [np.min(temp_result.v_ce)]
        else:
            vels = vels + [np.max(temp_result.v_ce)]

    plt.figure(
        '1d. Isotonic muscle experiment for tension and contractile velocities'
    )
    plt.plot(vels, tendon_forces)
    plt.plot(vels, load_range)
    plt.plot(vels, active_forces)
    plt.plot(vels, passive_forces)
    plt.plot(vels, total_forces)
    plt.title(
        'Isotonic muscle experiment for tension and contractile velocities')
    plt.xlabel('Muscle contracticle velocity [lopts/s]')
    plt.ylabel('Tension [N]')
    plt.legend(("Tendon Force", "Load", "Active Force", "Passive Force",
                "Total force"))
    plt.grid()
    plt.show()

    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ### code for 1f

    pylog.info(
        "1f. relationship between muscle contractile velocity and external load with different stimulations"
    )

    muscle_stimulations = np.arange(0, muscle_stimulation + 0.1, 0.1)

    load_start = 1
    load_stop = 501
    load_step = 10
    load_range = np.arange(load_start, load_stop, load_step)

    all_vels = []
    all_tendon_forces = []

    for temp_muscle_stimulation in muscle_stimulations:

        temp_vels = []
        temp_tendon_forces = []

        for temp_load in load_range:
            temp_result = sys.integrate(x0=x0,
                                        time=time,
                                        time_step=time_step,
                                        time_stabilize=time_stabilize,
                                        stimulation=temp_muscle_stimulation,
                                        load=temp_load)

            temp_tendon_force = temp_result.tendon_force[-1]
            temp_tendon_forces = temp_tendon_forces + [temp_tendon_force]

            temp_l_mtu = temp_result.l_mtu[-1]

            if temp_l_mtu < sys.muscle.l_opt + sys.muscle.l_slack:
                temp_vels = temp_vels + [np.min(temp_result.v_ce)]
            else:
                temp_vels = temp_vels + [np.max(temp_result.v_ce)]

        all_vels = all_vels + [temp_vels]
        all_tendon_forces = all_tendon_forces + [temp_tendon_forces]

    plt.figure(
        '1f. Isotonic muscle experiment for loads and contractile velocities with different stimulations'
    )
    for i in range(len(muscle_stimulations)):
        plt.plot(all_vels[i], load_range)
    plt.title(
        'Isotonic muscle experiment for loads and contractile velocities with different stimulations'
    )
    plt.xlabel('Muscle contracticle velocity [lopts/s]')
    plt.ylabel('Tension [N]')
    temp_legends = [
        'stimulation = ' + format((temp_stimulation), '.1f')
        for temp_stimulation in muscle_stimulations
    ]
    plt.legend(temp_legends)
    plt.grid()
    plt.show()

    plt.figure(
        '1f. Isotonic muscle experiment for tendon forces and contractile velocities with different stimulations'
    )
    for i in range(len(muscle_stimulations)):
        plt.plot(all_vels[i], all_tendon_forces[i])
    plt.title(
        'Isotonic muscle experiment for tendon forces and contractile velocities with different stimulations'
    )
    plt.xlabel('Muscle contracticle velocity [lopts/s]')
    plt.ylabel('Tension [N]')
    temp_legends = [
        'stimulation = ' + format((temp_stimulation), '.1f')
        for temp_stimulation in muscle_stimulations
    ]
    plt.legend(temp_legends)
    plt.grid()
    plt.show()
예제 #8
0
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)


    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single load
    load = 100.

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT,
          sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration
    load_array=np.arange(0.1,3000/sys.mass.parameters.g,5)
    vel_ce=[]
    act_force_int=[]

    stimulation=[0.,0.2,0.4,0.6,0.8,1.]
    colors=['r','g','b','c','m','y']
    for loadx in load_array:
        
        result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           time_stabilize=time_stabilize,
                           stimulation=muscle_stimulation,
                           load=loadx)
        if (loadx==150.1 or loadx==155.1):
            plt.figure("Single Exp")
            plt.title("Result for a single experiment")
            plt.plot(result.time,result.v_ce*(-1))
            plt.xlabel("Time [s]")
            plt.ylabel("Velocity [m/s]")
            plt.legend(('Shortening','Lengthening'))
            pylog.info(result.l_mtc[-1])
            plt.grid()
            plt.show()
            
        if result.l_mtc[-1] < ( muscle_parameters.l_opt + muscle_parameters.l_slack):
            #pylog.info("min condition")
            vel_ce.append(min(result.v_ce[:])*(-1))
            act_force_int.append(max(result.active_force))
        else: 
            vel_ce.append(max(result.v_ce[:])*(-1))
            act_force_int.append(max(result.active_force))
           # pylog.info("max condition")
                
    
    plt.figure('Isotonic muscle experiment')
    plt.plot(vel_ce,load_array*mass_parameters.g)
    plt.plot(vel_ce,act_force_int)
    plt.title('Isotonic Muscle Experiment')
    plt.xlabel('Contractile Element Velocity [m/s]')
    plt.ylabel('Force[N]')
    plt.legend(("External Load","Internal Active Force"))
    plt.grid()
    plt.show()
    plt.figure('Varying Stimulation')
    leg=[] 
    for i,stim in enumerate(stimulation):
        pylog.info("Stim is {}".format(stim))
        vel_ce=[]
        act_force_int=[]
        for loadx in load_array:
            
            result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=stim,
                               load=loadx)
                
            if result.l_mtc[-1] < ( muscle_parameters.l_opt + muscle_parameters.l_slack):
                #pylog.info("min condition")
                vel_ce.append(min(result.v_ce[:])*(-1))
                act_force_int.append(max(result.active_force))
            else: 
                vel_ce.append(max(result.v_ce[:])*(-1))
                act_force_int.append(max(result.active_force))
        plt.plot(vel_ce,load_array*mass_parameters.g,colors[i],label='Stimulation={}'.format(stim))
        plt.plot(vel_ce,act_force_int,colors[i],linestyle=":",label='Stimulation={}'.format(stim))
        leg.append(("Load-velocity  plot with simulation={}".format(stim))) 
        leg.append(("Force-velocity with simulation={}".format(stim))) 

    plt.title('Varying Stimulation')
    plt.legend(leg)
    plt.xlabel('Contractile Element Velocity [m/s]')
    plt.ylabel('Force[N]')
    
    #("Stimulation = 0","Stimulation = 0.2","Stimulation = 0.4","Stimulation = 0.6","Stimulation = 0.8","Stimulation = 1")
    plt.grid()
예제 #9
0
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single load
    #load = 15.

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.35
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    ####custom code#####

    load_range = np.arange(1, 361, 5)
    my_velocity = []
    plt.figure('Isotonic muscle experiment')
    for load in load_range:
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=muscle_stimulation,
                               load=load)

        my_velocity.append(max(abs(result.v_ce)))

        i, = np.where(result.v_ce == my_velocity[-1])
        if i.shape == (0, ):  #checks for negative velocity
            my_velocity[-1] *= -1

        plt.plot(result.time, result.v_ce, label='Load: %s' % load)

    # Plotting

    #plt.plot(result.time, result.v_ce)
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contractilve velocity')
    plt.grid()

    plt.figure('Isotonic Experiment')
    plt.plot(load_range, my_velocity)
    plt.xlabel('Load[Kg]')
    plt.ylabel('Maximal Muscle Contractile Velocity[m/s]')
    plt.grid()
예제 #10
0
def exercise1f():
    """ Exercise 1f """

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # Velocity-tension curve

    # Evalute for various loads
    load_min = 1
    load_max = 501
    N_load = 50
    load_list = np.arange(load_min, load_max, (load_max - load_min) / N_load)

    # Evalute for various muscle stimulation
    N_stim = 4
    muscle_stimulation = np.round(np.arange(N_stim) / (N_stim - 1), 2)

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time_stabilize = 0.2
    time = np.arange(t_start, t_stop, time_step)

    max_velocity = np.zeros((N_stim, N_load))
    tendonF = np.zeros((N_stim, N_load))

    for i, stim in enumerate(muscle_stimulation):

        for ind_load, load in enumerate(load_list):
            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   time_stabilize=time_stabilize,
                                   stimulation=stim,
                                   load=load)
            if (result.l_mtc[-1] < (sys.muscle.L_OPT + sys.muscle.L_SLACK)):
                max_velocity[i, ind_load] = np.max(-result.v_ce)
            else:
                max_velocity[i, ind_load] = np.min(-result.v_ce)
            tendonF[i, ind_load] = result.tendon_force[-1]

    # Plotting
    plt.figure('Isotonic Muscle Experiment 1f')
    v_min = np.amin(max_velocity)
    v_max = np.amax(max_velocity)

    for i, stim in enumerate(muscle_stimulation):
        plt.plot(max_velocity[i, :] * 100 / -muscle.V_MAX,
                 tendonF[i, :] * 100 / muscle.F_MAX,
                 label='Tendon Force - Stimulation = {}'.format(stim))
        plt.xlim(v_min * 100 / -muscle.V_MAX, v_max * 100 / -muscle.V_MAX)
        plt.ylim(0, 200)

    plt.axvline(linestyle='--', color='r', linewidth=2)
    plt.text(v_min * 100 / -muscle.V_MAX * 2 / 3,
             170,
             r'lengthening',
             fontsize=16)
    plt.text(v_max * 100 / -muscle.V_MAX * 1 / 8,
             170,
             r'shortening',
             fontsize=16)
    plt.xlabel('Maximal velocity [% of $V_{max}$]')
    plt.ylabel('Tendon Force [% of $F_{max}$]')
    plt.title(
        'Velocity-tension curves for isotonic muscle experiment with various muscle stimulations'
    )
    plt.legend()
    plt.grid()
예제 #11
0
def exercise1d():
    """ Exercise 1d
    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Velocity-tension curve

    # Evalute for various loads
    load_min = 1
    load_max = 301
    N_load = 50
    load_list = np.arange(load_min, load_max, (load_max - load_min) / N_load)

    # Evalute for Stimulation = 1.0
    stimulation = 1.0

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time_stabilize = 0.2
    time = np.arange(t_start, t_stop, time_step)

    max_velocity = np.zeros(N_load)
    tendonF = np.zeros(N_load)
    for ind_load, load in enumerate(load_list):
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=stimulation,
                               load=load)
        if (result.l_mtc[-1] < (sys.muscle.L_OPT + sys.muscle.L_SLACK)):
            max_velocity[ind_load] = np.max(-result.v_ce)
        else:
            max_velocity[ind_load] = np.min(-result.v_ce)
        tendonF[ind_load] = result.tendon_force[-1]

    # Plotting
    plt.figure('Isotonic Muscle Experiment 1d')
    v_min = np.amin(max_velocity)
    v_max = np.amax(max_velocity)
    plt.plot(max_velocity * 100 / -muscle.V_MAX, tendonF * 100 / muscle.F_MAX)
    plt.axvline(linestyle='--', color='r', linewidth=2)
    plt.text(v_min * 100 / -muscle.V_MAX, 20, r'lengthening', fontsize=14)
    plt.text(v_max * 100 / -muscle.V_MAX * 1 / 3,
             20,
             r'shortening',
             fontsize=14)
    plt.xlabel('Maximal velocity [% of $V_{max}$]')
    plt.ylabel('Tendon Force [% of $F_{max}$]')
    plt.title(
        'Velocity-tension curve for isotonic muscle experiment (Stimulation = 1.0)'
    )
    plt.grid()
예제 #12
0
파일: exercise1.py 프로젝트: Gabmrtt/CMC
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.l_opt # To get the muscle optimal length

    # Evalute for a single load
    load = 250/9.81

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.0

    # Set the initial condition
    x0 = [0.0, sys.muscle.l_opt,
          sys.muscle.l_opt + sys.muscle.l_slack, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.4
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)
    
    load = np.linspace(100/9.81,1700/9.81,50)
    Stimu = np.linspace(0,1,6)
    Vce = np.zeros((len(load),len(Stimu)))
    plt.figure('Isotonix Globale')
    for j in range(len(Stimu)):
        
   #     Vce = np.empty(len(load))
    #    Vcemax = np.empty(len(load))
    #    Vcemin = np.empty(len(load))
    
        for i in range(len(load)):

    # Run the integration
            result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           time_stabilize=time_stabilize,
                           stimulation=Stimu[j],
                           load=load[i]
                           )
            print(result.l_mtu[-1])
            print(sys.muscle.l_opt + sys.muscle.l_slack)
            if (result.l_mtu[-1] > sys.muscle.l_opt + sys.muscle.l_slack):
                Vce[i,j]=(max(result.v_ce))
            else: Vce[i,j] = min(result.v_ce)
        
        Vce[:,j]
        plt.plot(Vce[:,j],load, label ="MS %s" %round(Stimu[j],1))
        plt.legend(loc = "upper left")
        plt.xlabel('Vitesse max [m/s]')
        plt.ylabel('Load [kg]')






    # Plotting
    plt.figure('Isotonic muscle experiment')
    #plt.plot(result.time,
    #         result.v_ce)
    plt.plot(Vce,load)
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Vitesse max [m/s]')
    plt.ylabel('Load [kg]')
    #plt.xlabel('Time [s]')
    #plt.ylabel('Muscle contracticle velocity [lopts/s]')
    plt.grid()

#MUSCLE-Force Velocity relationship : 
    plt.figure('Muscle Force-Velocity')
    plt.plot(result.v_ce,result.active_force, label ="Active Force")
    plt.plot(result.v_ce,result.active_force+result.passive_force, label = "Passive + Active")
    plt.plot(result.v_ce,result.passive_force, label = "Passive Force")
    plt.legend(loc = "upper left")
    plt.xlabel('Vitesse m')
    plt.ylabel('Force')
예제 #13
0
파일: exercise1.py 프로젝트: iricchi/CMC
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    #sys.muscle.L_OPT=0.05

    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.25
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal

    # Create a V_ce vector
    V_ce_1d = np.zeros(100)
    PF_ce_1d = np.zeros(100)
    AF_ce_1d = np.zeros(100)
    # Create load vector
    Load = np.linspace(1, 600, num=100)
    """1.d) velocity-tension analysis """

    for i in range(0, len(Load)):
        # Set the initial condition
        x0 = [
            muscle_stimulation, sys.muscle.L_OPT,
            sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0
        ]

        # Evalute for a single load
        load = Load[i]

        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=muscle_stimulation,
                               load=load)
        #print(sys.muscle.L_OPT+sys.muscle.L_SLACK)
        #print(result.l_mtc[-1]-(sys.muscle.L_OPT+sys.muscle.L_SLACK))

        if (result.l_mtc[-1] < sys.muscle.L_OPT + sys.muscle.L_SLACK):
            V_ce_1d[i] = min(result.v_ce)

        else:

            V_ce_1d[i] = max(result.v_ce)

        PF_ce_1d[i] = result.passive_force[-1]
        AF_ce_1d[i] = result.active_force[-1]

        # Plotting
        plt.figure('Isotonic muscle experiment')
        plt.plot(result.time, result.v_ce)
        plt.title('Isotonic muscle experiment')
        plt.xlabel('Time [s]')
        plt.ylabel('Contractile element velocity')
        plt.grid()

    # Plot velocity versus tension
    plt.figure()
    plt.plot(V_ce_1d, Load)
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Contractile element velocity')
    plt.ylabel('Load')
    plt.grid()
    plt.axvline(0, color='r', linestyle='--')

    # Plot velocity versus tension
    plt.figure()
    plt.plot(V_ce_1d, PF_ce_1d + AF_ce_1d)
    #plt.plot(V_ce_1d, PF_ce_1d)
    #plt.plot(V_ce_1d, AF_ce_1d, '--')
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Contractile element velocity')
    plt.ylabel('Total Force')
    plt.grid()
    #plt.legend(['total','passive', 'active'])
    plt.axvline(0, color='r', linestyle='--')
    """ 1.f) velocity-tension as a function of muscle activation """
    # Create solution vector
    #R_glob=np.zeros((5,50))
    # Create muscle activation vector
    dS = np.linspace(0.1, 1, num=5)
    # Create a V_ce vector
    V_ce = np.zeros((5, 100))

    PF_ce = np.zeros((5, 100))
    AF_ce = np.zeros((5, 100))
    for i in range(0, len(Load)):
        for j in range(0, len(dS)):

            # Evalute for a single load
            load = Load[i]

            # Evalute for a single muscle stimulation
            muscle_stimulation = dS[j]

            # Set the initial condition
            x0 = [
                muscle_stimulation, sys.muscle.L_OPT,
                sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0
            ]

            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   time_stabilize=time_stabilize,
                                   stimulation=muscle_stimulation,
                                   load=load)
            #R_glob[j,i]=result.tendon_force[len(result.tendon_force)-1]
            #print(sys.muscle.L_OPT+sys.muscle.L_SLACK)
            #print(result.l_mtc[-1]-(sys.muscle.L_OPT+sys.muscle.L_SLACK))

            if (result.l_mtc[-1] < sys.muscle.L_OPT + sys.muscle.L_SLACK):
                V_ce[j, i] = min(result.v_ce)

            else:

                V_ce[j, i] = max(result.v_ce)

            PF_ce[j, i] = result.passive_force[-1]
            AF_ce[j, i] = result.active_force[-1]

            # # Plotting
            # plt.figure('Isotonic muscle experiment')
            # plt.plot(result.time, result.v_ce)
            # plt.title('Isotonic muscle experiment')
            # plt.xlabel('Time [s]')
            # plt.ylabel('Contractile element velocity')
            # plt.grid()

    # Plot velocity versus tension
    plt.figure()
    for i in range(0, 5):
        plt.plot(V_ce[i, :], PF_ce[i, :] + AF_ce[i, :])
        plt.title('Isotonic muscle experiment')
        plt.xlabel('Contractile element velocity')
        plt.ylabel('Force')
        plt.grid()
    plt.legend([
        'Stimulation = 0.1', 'Stimulation = 0.28', 'Stimulation = 0.46',
        'Stimulation = 0.64', 'Stimulation = 0.82', 'Stimulation = 1'
    ])