예제 #1
0
def start_kdv(infile, rho, z, depthfile):
    # Parse the yaml file
    with open(infile, 'r') as f:
        args = yaml.load(f)

        kdvargs = args['kdvargs']
        kdvargs.update({'wavefunc': zeroic})
        kdvargs.update({'verbose': False})
        #kdvargs.update({'nonlinear':False}) # Testing

        runtime = args['runtime']['runtime']
        ntout = args['runtime']['ntout']
        xpt = args['runtime']['xpt']

    # Parse the density and depth files
    depthtxt = np.loadtxt(depthfile, delimiter=',')

    # Initialise the KdV class
    mykdv = vKdV(rho,\
        z,\
        depthtxt[:,1],\
        x=depthtxt[:,0],\
        **kdvargs)

    return mykdv
def start_kdv(infile, rho, z, depthfile):
    # Parse the yaml file
    with open(infile, 'r') as f:
        args = yaml.load(f, Loader=yaml.FullLoader)

        kdvargs = args['kdvargs']
        kdvargs.update({'verbose': False})
        #kdvargs.update({'nonlinear':False}) # Testing
        #kdvargs['Nsubset'] = 1

        runtime = args['runtime']['runtime']
        ntout = args['runtime']['ntout']
        xpt = args['runtime']['xpt']

    # Parse the density and depth files
    depthtxt = np.loadtxt(depthfile, delimiter=',')
    N = depthtxt[:, 0].shape[0]
    dx = depthtxt[1, 0] - depthtxt[0, 0]
    # Initialise the KdV class
    mykdv = vKdV(rho, z, depthtxt[:, 1], depthtxt[:, 0], N=N, dx=dx, **kdvargs)

    return mykdv
예제 #3
0
params = pd.read_csv(strat_param_file, index_col='time', parse_dates=True)
pp = params[tstart[0:8]:'20100101']

rhoz = lamb_tanh_rho(z, pp['rho0'][0], pp['dp'][0], pp['z1'][0], pp['h1'][0])

# In[4]:

###
# Intitialise the class

mykdv = vKdV(rhoz, z, \
 h, x=x,\
 mode=mode,\
 a0=a0,\
 Lw=Lw,\
 x0=Lw,\
 Cmax=Cmax,\
        nonlinear=nonlinear,\
        nonhydrostatic=nonhydrostatic,\
        #timesolver=timesolver,\
        dt=dt)
#
#mykdv.print_params()
#
#print 'Lamb values:\n r01 = -2.91e3\n r10 = 8.31e-3\n r20 = 2.35e-5'
##########
# run the model
nsteps = int(runtime // mykdv.dt_s)

print nsteps, mykdv.dt_s
예제 #4
0
def run_solver(
    a0_sample,
    beta_sample,
    infile,
    depthfile,
):
    """
    instantiate an run the actual PDE solver, returning the full list of output amplitudes, plus the (signed)
    maximum amplitude.
    """

    # Parse the yaml file
    with open(infile, 'r') as f:
        args = yaml.load(f)

        kdvargs = args['kdvargs']
        kdvargs.update({'wavefunc': zeroic})

        # Set the buoyancy eigenfunction to save time (not used here...)
        kdvargs.update({'D10': -1})
        kdvargs.update({'D01': -1})
        kdvargs.update({'D20': -1})

        runtime = args['runtime']['runtime']
        ntout = args['runtime']['ntout']
        output_x = args['runtime']['xpt']

    # Parse the density and depth files
    depthtxt = np.loadtxt(depthfile, delimiter=',')

    x_domain = depthtxt[:, 0]

    #    print("p2 for a0 {}".format(a0_sample))
    omega = 2 * np.pi / (12.42 * 3600)

    #x_domain = np.arange(0,L_d+dx, dx)
    #    print("running kdv solver for a0 {}".format(a0_sample))
    rho_std = 1.5
    rho_mu = 1024.
    z_std = 100.
    #z_new = np.arange(0, zmax,-dz)
    dz = 5
    z_new = np.arange(-depthtxt[0, 1], dz, dz)[::-1]
    #rho_sample = double_tanh(z_new, beta_sample)
    rho_sample = double_tanh(z_new / z_std, beta_sample) * rho_std + rho_mu

    # Find the ouput x location
    xpt = np.argwhere(x_domain >= output_x)[0, 0]

    # Boundary forcing function
    def bcfunc(t):
        return a0_sample * np.sin(omega * t)

    def amp_at_x(kdv):
        #u_vel, w_vel = kdv.calc_velocity()
        u_vel = calc_u_velocity_1d(kdv, kdv.B[xpt], xpt)
        # u_vel is now a matrix size [Nx, Nz]
        u_surface = u_vel[0]
        u_seabed = u_vel[-1]

        return kdv.B[xpt], u_surface, u_seabed

    # Parse the density and depth files
    depthtxt = np.loadtxt(depthfile, delimiter=',')

    # Initialise the KdV class
    mykdv = vKdV(rho_sample, z_new, depthtxt[:,1], \
        x=depthtxt[:,0], **kdvargs)

    ## Run the model
    nsteps = int(runtime // kdvargs['dt'])
    nn = 0
    output_amplitude = []
    for ii in range(nsteps):
        if mykdv.solve_step(bc_left=bcfunc(mykdv.t)) != 0:
            print('Blowing up at step: %d' % ii)
            break

        # Evalute the function
        output_amplitude.append(amp_at_x(mykdv))

    output = np.array([[aa[0], aa[1], aa[2]] for aa in output_amplitude])
    output_amplitude = output[:, 0]
    output_u_surface = output[:, 1]
    output_u_seabed = output[:, 2]

    #if rank == 0:
    #    plt.figure()
    #    plt.plot(output_u_seabed)
    #    plt.show()

    max_output_amplitude, tidx = maximum_amplitude_finder(output_amplitude)
    max_output_u_surface, _ = maximum_amplitude_finder(output_u_surface)
    max_output_u_seabed, _ = maximum_amplitude_finder(output_u_seabed)
    tmax = tidx * mykdv.dt_s

    return max_output_amplitude, output_amplitude, \
        max_output_u_surface, max_output_u_seabed, tmax, mykdv, xpt
예제 #5
0
파일: iwaveio.py 프로젝트: mrayson/iwaves
def vkdv_from_netcdf(ncfile, a0=None, wavefunc=None, mode=None):
    """
    Wrapper to load an object directly from a pre-saved file
    """

    ds = xray.open_dataset(ncfile)

    if a0 is None:
        a0 = ds.a0

    if wavefunc is None:
        args = {}
    else:
        args = {'wavefunc':wavefunc}
    
    if mode is None:
        args.update({'mode':0})

    # Need this for backward compatability...
    if hasattr(ds,'r20'):
        r20 = ds.r20.values
        D20 = ds.D20.values
        phi20 = ds.phi20.values
        ekdv = ds.ekdv
    else:
        r20 = np.zeros_like(ds.x.values)
        ekdv = False
        D20 = np.zeros_like(ds.D10)
        phi20 = np.zeros_like(ds.D10)


    mykdv = vKdV(
        ds.rhoZ.values[:,0],
        ds.Z.values[:,0],
        ds.h.values,
        x=ds.x.values,\
        #mode=ds.mode,\
        a0=a0,\
        #Lw=ds.Lw,\
        x0=0,\
        ekdv=ekdv,
        #nu_H=ds.nu_H,\
        #spongedist=ds.spongedist,\
        #Cmax=ds.Cmax,\
        #dt=ds.dt_s,
        Cn=ds.Cn.values,
        Phi=ds.Phi.values,
        Alpha=ds.Alpha.values,
        Beta=ds.Beta.values,
        Qterm=ds.Qterm.values,
        phi01=ds.phi01.values,
        phi10=ds.phi10.values,
        D01=ds.D01.values,
        D10=ds.D10.values,
        phi20=phi20,
        D20=D20,
        r20=r20,
        **args
    )

    # Return the time-variable amplitude array as well
    if 'B_t' in list(ds.variables.keys()):
        B_t  = ds['B_t']
    else:
        B_t = None

    return mykdv, B_t