from jactorch.utils.meta import as_numpy from jactorch.utils.meta import as_tensor from difflogic.tqdm_utils import tqdm_for TASKS = ['final', 'stack', 'nlrl-Stack', 'nlrl-Unstack', 'nlrl-On', 'sort', 'path'] parser = JacArgumentParser() parser.add_argument( '--model', default='dlm', choices=['nlm', 'memnet', 'dlm'], help='model choices, nlm: Neural Logic Machine, memnet: Memory Networks, dlm: Differentiable Logic Machine') # NLM parameters, works when model is 'nlm'. nlm_group = parser.add_argument_group('Neural Logic Machines') DifferentiableLogicMachine.make_nlm_parser( nlm_group, { 'depth': 7, 'breadth': 3, 'exclude_self': True, 'logic_hidden_dim': [] }, prefix='nlm') nlm_group.add_argument( '--nlm-attributes', type=int, default=8, metavar='N', help='number of output attributes in each group of each layer of the LogicMachine' )
TASKS = [ 'outdegree', 'connectivity', 'adjacent', 'adjacent-mnist', 'has-father', 'has-sister', 'grandparents', 'uncle', 'maternal-great-uncle' ] parser = JacArgumentParser() parser.add_argument( '--model', default='nlm', choices=['nlm', 'memnet'], help='model choices, nlm: Neural Logic Machine, memnet: Memory Networks') # NLM parameters, works when model is 'nlm' nlm_group = parser.add_argument_group('Neural Logic Machines') LogicMachine.make_nlm_parser(nlm_group, { 'depth': 4, 'breadth': 3, 'exclude_self': True, 'logic_hidden_dim': [] }, prefix='nlm') nlm_group.add_argument( '--nlm-attributes', type=int, default=8, metavar='N', help= 'number of output attributes in each group of each layer of the LogicMachine' )
metavar='M', help='skip optim step if grad beyond this number') parser.add_argument('--solution-count', type=int, default=5, metavar='M', help='number at which to cap target-set') parser.add_argument('--model', default='nlm', choices=['nlm', 'rrn'], help='model choices, nlm: Neural Logic Machine') # NLM parameters, works when model is 'nlm' nlm_group = parser.add_argument_group('Neural Logic Machines') LogicMachine.make_nlm_parser(nlm_group, { 'depth': 4, 'breadth': 2, 'exclude_self': True, 'logic_hidden_dim': [] }, prefix='nlm') nlm_group.add_argument( '--nlm-attributes', type=int, default=8, metavar='N', help= 'number of output attributes in each group of each layer of the LogicMachine'