Mbrcinputs.precalc = False #True #This can be set to true if we want Mudbrace to be precalculated in D and t, in which case the above set Dbrc_mud and tbrc_mud would be overwritten #Hbrc data Hbrcmatin = MatInputs() Hbrcmatin.matname = np.array(['heavysteel']) Hbrcmatin.E = np.array([2.5e11]) Dbrc_hbrc = 1.1 Hbrcinputs = HBrcGeoInputs() Hbrcinputs.Dbrch = Dbrc_hbrc Hbrcinputs.ndiv = 0 #2 Hbrcinputs.Hbrcmatins = Hbrcmatin Hbrcinputs.precalc = True #This can be set to true if we want Hbrace to be set=Xbrace top D and t, in which case the above set Dbrch and tbrch would be overwritten #TP data TPlumpinputs = TPlumpMass() TPlumpinputs.mass = 200.e3 #[kg] TPstmpsmatin = MatInputs() TPbrcmatin = MatInputs() TPstemmatin = MatInputs() TPbrcmatin.matname = np.array(['heavysteel']) #TPbrcmatin.E=np.array([ 2.5e11]) TPstemmatin.matname = np.array(['heavysteel']).repeat(2) #TPstemmatin.E=np.array([ 2.1e11]).repeat(2) TPinputs = TPGeoInputs() TPinputs.TPbrcmatins = TPbrcmatin TPinputs.TPstemmatins = TPstemmatin TPinputs.TPstmpmatins = TPstmpsmatin TPinputs.Dstrut = leginputs.Dleg[-1]
Mbrcinputs.precalc=False #True #This can be set to true if we want Mudbrace to be precalculated in D and t, in which case the above set Dbrc_mud and tbrc_mud would be overwritten #Hbrc data Hbrcmatin=MatInputs() Hbrcmatin.matname=np.array(['heavysteel']) Hbrcmatin.E=np.array([ 2.5e11]) Dbrc_hbrc=1.1 Hbrcinputs=HBrcGeoInputs() Hbrcinputs.Dbrch=Dbrc_hbrc Hbrcinputs.ndiv=0#2 Hbrcinputs.Hbrcmatins=Hbrcmatin Hbrcinputs.precalc=True #This can be set to true if we want Hbrace to be set=Xbrace top D and t, in which case the above set Dbrch and tbrch would be overwritten #TP data TPlumpinputs=TPlumpMass() TPlumpinputs.mass=200.e3 #[kg] TPstmpsmatin=MatInputs() TPbrcmatin=MatInputs() TPstemmatin=MatInputs() TPbrcmatin.matname=np.array(['heavysteel']) #TPbrcmatin.E=np.array([ 2.5e11]) TPstemmatin.matname=np.array(['heavysteel']).repeat(2) #TPstemmatin.E=np.array([ 2.1e11]).repeat(2) TPinputs=TPGeoInputs() TPinputs.TPbrcmatins=TPbrcmatin TPinputs.TPstemmatins=TPstemmatin TPinputs.TPstmpmatins=TPstmpsmatin TPinputs.Dstrut=leginputs.Dleg[-1]
def example(wind_class='I',sea_depth=0.0,with_new_nacelle=False,with_landbos=False,flexible_blade=False,with_3pt_drive=False, with_ecn_opex=False, ecn_file=None,with_openwind=False,ow_file=None,ow_wkbook=None): """ Inputs: wind_class : str ('I', 'III', 'Offshore' - selected wind class for project) sea_depth : float (sea depth if an offshore wind plant) """ # === Create LCOE SE assembly ======== lcoe_se = lcoe_se_assembly(with_new_nacelle,with_landbos,flexible_blade,with_3pt_drive,with_ecn_opex,ecn_file) # === Set assembly variables and objects === lcoe_se.sea_depth = sea_depth # 0.0 for land-based turbine lcoe_se.turbine_number = 100 lcoe_se.year = 2009 lcoe_se.month = 12 rotor = lcoe_se.rotor nacelle = lcoe_se.nacelle jacket = lcoe_se.jacket tcc_a = lcoe_se.tcc_a # bos_a = lcoe_se.bos_a # opex_a = lcoe_se.opex_a aep_a = lcoe_se.aep_a fin_a = lcoe_se.fin_a # Turbine =========== from wisdem.reference_turbines.nrel5mw.nrel5mw_jacket import configure_nrel5mw_turbine_with_jacket configure_nrel5mw_turbine_with_jacket(lcoe_se,wind_class,lcoe_se.sea_depth) # TODO: these should be specified at the turbine level and connected to other system inputs lcoe_se.tower_dt = 3.87 # (Array, m): diameters along tower # float for jacket lcoe_se.generator_speed = 1173.7 # (Float, rpm) # generator speed # extra variable constant for now #lcoe_se.nacelle.bedplate.rotor_bending_moment_y = -2.3250E+06 # shouldnt be needed anymore # tcc ==== lcoe_se.advanced_blade = True lcoe_se.offshore = False lcoe_se.assemblyCostMultiplier = 0.30 lcoe_se.profitMultiplier = 0.20 lcoe_se.overheadCostMultiplier = 0.0 lcoe_se.transportMultiplier = 0.0 # for new landBOS ''' # === new landBOS === lcoe_se.voltage = 137 lcoe_se.distInter = 5 lcoe_se.terrain = 'FLAT_TO_ROLLING' lcoe_se.layout = 'SIMPLE' lcoe_se.soil = 'STANDARD' ''' # aep ==== if not with_openwind: lcoe_se.array_losses = 0.059 lcoe_se.other_losses = 0.0 if not with_ecn_opex: lcoe_se.availability = 0.94 # fin === lcoe_se.fixed_charge_rate = 0.095 lcoe_se.construction_finance_rate = 0.0 lcoe_se.tax_rate = 0.4 lcoe_se.discount_rate = 0.07 lcoe_se.construction_time = 1.0 lcoe_se.project_lifetime = 20.0 # Set plant level inputs === shearExp = 0.2 #TODO : should be an input to lcoe rotor.cdf_reference_height_wind_speed = 90.0 if not with_openwind: lcoe_se.array_losses = 0.1 lcoe_se.other_losses = 0.0 if not with_ecn_opex: lcoe_se.availability = 0.98 rotor.turbulence_class = 'B' lcoe_se.multiplier = 2.23 if wind_class == 'Offshore': # rotor.cdf_reference_mean_wind_speed = 8.4 # TODO - aep from its own module # rotor.cdf_reference_height_wind_speed = 50.0 # rotor.weibull_shape = 2.1 shearExp = 0.14 # TODO : should be an input to lcoe lcoe_se.array_losses = 0.15 if not with_ecn_opex: lcoe_se.availability = 0.96 lcoe_se.offshore = True lcoe_se.multiplier = 2.33 lcoe_se.fixed_charge_rate = 0.118 rotor.shearExp = shearExp #tower.wind1.shearExp = shearExp # not needed for jacket #tower.wind2.shearExp = shearExp # ==== from rotorse.precomp import Profile, Orthotropic2DMaterial, CompositeSection # TODO: can just pass file names and do this initialization inside of rotor #from commonse.environment import PowerWind, TowerSoil #from wisdem.reference_turbines.nrel5mw.nrel5mw_jacket import configure_nrel5mw_turbine_with_jacket from commonse.utilities import print_vars #configure_nrel5mw_turbine_with_jacket(turbine) # print_vars(turbine, list_type='inputs', prefix='turbine') rotor = lcoe_se.rotor nacelle = lcoe_se.nacelle jacket = lcoe_se.jacket # ================= # === Turbine Configuration === # --- atmosphere --- lcoe_se.rho = 1.225 # (Float, kg/m**3): density of air lcoe_se.mu = 1.81206e-5 # (Float, kg/m/s): dynamic viscosity of air lcoe_se.shear_exponent = 0.2 # (Float): shear exponent lcoe_se.hub_height = 90.0 # (Float, m): hub height lcoe_se.turbine_class = 'I' # (Enum): IEC turbine class lcoe_se.turbulence_class = 'B' # (Enum): IEC turbulence class class lcoe_se.cdf_reference_height_wind_speed = 90.0 # (Float): reference hub height for IEC wind speed (used in CDF calculation) lcoe_se.g = 9.81 # (Float, m/s**2): acceleration of gravity lcoe_se.downwind = False # (Bool): flag if rotor is downwind lcoe_se.generator_speed = 1173.7 # (Float, rpm) # generator speed lcoe_se.tower_dt = 3.87 # ---------------------- # ============================ # === rotor === # --- blade grid --- rotor.initial_aero_grid = np.array([0.02222276, 0.06666667, 0.11111057, 0.16666667, 0.23333333, 0.3, 0.36666667, 0.43333333, 0.5, 0.56666667, 0.63333333, 0.7, 0.76666667, 0.83333333, 0.88888943, 0.93333333, 0.97777724]) # (Array): initial aerodynamic grid on unit radius rotor.initial_str_grid = np.array([0.0, 0.00492790457512, 0.00652942887106, 0.00813095316699, 0.00983257273154, 0.0114340970275, 0.0130356213234, 0.02222276, 0.024446481932, 0.026048006228, 0.06666667, 0.089508406455, 0.11111057, 0.146462614229, 0.16666667, 0.195309105255, 0.23333333, 0.276686558545, 0.3, 0.333640766319, 0.36666667, 0.400404310407, 0.43333333, 0.5, 0.520818918408, 0.56666667, 0.602196371696, 0.63333333, 0.667358391486, 0.683573824984, 0.7, 0.73242031601, 0.76666667, 0.83333333, 0.88888943, 0.93333333, 0.97777724, 1.0]) # (Array): initial structural grid on unit radius rotor.idx_cylinder_aero = 3 # (Int): first idx in r_aero_unit of non-cylindrical section, constant twist inboard of here rotor.idx_cylinder_str = 14 # (Int): first idx in r_str_unit of non-cylindrical section rotor.hubFraction = 0.025 # (Float): hub location as fraction of radius # ------------------ # --- blade geometry --- rotor.r_aero = np.array([0.02222276, 0.06666667, 0.11111057, 0.2, 0.23333333, 0.3, 0.36666667, 0.43333333, 0.5, 0.56666667, 0.63333333, 0.64, 0.7, 0.83333333, 0.88888943, 0.93333333, 0.97777724]) # (Array): new aerodynamic grid on unit radius rotor.r_max_chord = 0.23577 # (Float): location of max chord on unit radius rotor.chord_sub = [3.2612, 4.5709, 3.3178, 1.4621] # (Array, m): chord at control points. defined at hub, then at linearly spaced locations from r_max_chord to tip rotor.theta_sub = [13.2783, 7.46036, 2.89317, -0.0878099] # (Array, deg): twist at control points. defined at linearly spaced locations from r[idx_cylinder] to tip rotor.precurve_sub = [0.0, 0.0, 0.0] # (Array, m): precurve at control points. defined at same locations at chord, starting at 2nd control point (root must be zero precurve) rotor.delta_precurve_sub = [0.0, 0.0, 0.0] # (Array, m): adjustment to precurve to account for curvature from loading rotor.sparT = [0.05, 0.047754, 0.045376, 0.031085, 0.0061398] # (Array, m): spar cap thickness parameters rotor.teT = [0.1, 0.09569, 0.06569, 0.02569, 0.00569] # (Array, m): trailing-edge thickness parameters rotor.bladeLength = 61.5 # (Float, m): blade length (if not precurved or swept) otherwise length of blade before curvature rotor.delta_bladeLength = 0.0 # (Float, m): adjustment to blade length to account for curvature from loading rotor.precone = 2.5 # (Float, deg): precone angle rotor.tilt = 5.0 # (Float, deg): shaft tilt rotor.yaw = 0.0 # (Float, deg): yaw error rotor.nBlades = 3 # (Int): number of blades # ------------------ # --- airfoil files --- import rotorse basepath = os.path.join(os.path.dirname(rotorse.__file__), '5MW_AFFiles') # basepath = os.path.join(os.path.dirname(os.path.realpath(__file__)), '5MW_AFFiles') # load all airfoils airfoil_types = [0]*8 airfoil_types[0] = os.path.join(basepath, 'Cylinder1.dat') airfoil_types[1] = os.path.join(basepath, 'Cylinder2.dat') airfoil_types[2] = os.path.join(basepath, 'DU40_A17.dat') airfoil_types[3] = os.path.join(basepath, 'DU35_A17.dat') airfoil_types[4] = os.path.join(basepath, 'DU30_A17.dat') airfoil_types[5] = os.path.join(basepath, 'DU25_A17.dat') airfoil_types[6] = os.path.join(basepath, 'DU21_A17.dat') airfoil_types[7] = os.path.join(basepath, 'NACA64_A17.dat') # place at appropriate radial stations af_idx = [0, 0, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7] n = len(af_idx) af = [0]*n for i in range(n): af[i] = airfoil_types[af_idx[i]] rotor.airfoil_files = af # (List): names of airfoil file # ---------------------- # --- control --- rotor.control.Vin = 3.0 # (Float, m/s): cut-in wind speed rotor.control.Vout = 25.0 # (Float, m/s): cut-out wind speed #rotor.control.ratedPower = 5e6 # (Float, W): rated power lcoe_se.machine_rating = 5e3 # (Float, kW): rated power rotor.control.minOmega = 0.0 # (Float, rpm): minimum allowed rotor rotation speed rotor.control.maxOmega = 12.0 # (Float, rpm): maximum allowed rotor rotation speed rotor.control.tsr = 7.55 # (Float): tip-speed ratio in Region 2 (should be optimized externally) rotor.control.pitch = 0.0 # (Float, deg): pitch angle in region 2 (and region 3 for fixed pitch machines) rotor.pitch_extreme = 0.0 # (Float, deg): worst-case pitch at survival wind condition rotor.azimuth_extreme = 0.0 # (Float, deg): worst-case azimuth at survival wind condition rotor.VfactorPC = 0.7 # (Float): fraction of rated speed at which the deflection is assumed to representative throughout the power curve calculation # ---------------------- # --- aero and structural analysis options --- rotor.nSector = 4 # (Int): number of sectors to divide rotor face into in computing thrust and power rotor.npts_coarse_power_curve = 20 # (Int): number of points to evaluate aero analysis at rotor.npts_spline_power_curve = 200 # (Int): number of points to use in fitting spline to power curve rotor.AEP_loss_factor = 1.0 # (Float): availability and other losses (soiling, array, etc.) rotor.drivetrainType = 'geared' # (Enum) rotor.nF = 5 # (Int): number of natural frequencies to compute rotor.dynamic_amplication_tip_deflection = 1.35 # (Float): a dynamic amplification factor to adjust the static deflection calculation # ---------------------- # --- materials and composite layup --- basepath = os.path.join(os.path.dirname(rotorse.__file__), '5MW_PreCompFiles') # basepath = os.path.join(os.path.dirname(os.path.realpath(__file__)), '5MW_PrecompFiles') materials = Orthotropic2DMaterial.listFromPreCompFile(os.path.join(basepath, 'materials.inp')) ncomp = len(rotor.initial_str_grid) upper = [0]*ncomp lower = [0]*ncomp webs = [0]*ncomp profile = [0]*ncomp rotor.leLoc = np.array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.498, 0.497, 0.465, 0.447, 0.43, 0.411, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4]) # (Array): array of leading-edge positions from a reference blade axis (usually blade pitch axis). locations are normalized by the local chord length. e.g. leLoc[i] = 0.2 means leading edge is 0.2*chord[i] from reference axis. positive in -x direction for airfoil-aligned coordinate system rotor.sector_idx_strain_spar = [2]*ncomp # (Array): index of sector for spar (PreComp definition of sector) rotor.sector_idx_strain_te = [3]*ncomp # (Array): index of sector for trailing-edge (PreComp definition of sector) web1 = np.array([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 0.4114, 0.4102, 0.4094, 0.3876, 0.3755, 0.3639, 0.345, 0.3342, 0.3313, 0.3274, 0.323, 0.3206, 0.3172, 0.3138, 0.3104, 0.307, 0.3003, 0.2982, 0.2935, 0.2899, 0.2867, 0.2833, 0.2817, 0.2799, 0.2767, 0.2731, 0.2664, 0.2607, 0.2562, 0.1886, -1.0]) web2 = np.array([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 0.5886, 0.5868, 0.5854, 0.5508, 0.5315, 0.5131, 0.4831, 0.4658, 0.4687, 0.4726, 0.477, 0.4794, 0.4828, 0.4862, 0.4896, 0.493, 0.4997, 0.5018, 0.5065, 0.5101, 0.5133, 0.5167, 0.5183, 0.5201, 0.5233, 0.5269, 0.5336, 0.5393, 0.5438, 0.6114, -1.0]) web3 = np.array([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0]) rotor.chord_str_ref = np.array([3.2612, 3.3100915356, 3.32587052924, 3.34159388653, 3.35823798667, 3.37384375335, 3.38939112914, 3.4774055542, 3.49839685, 3.51343645709, 3.87017220335, 4.04645623801, 4.19408216643, 4.47641008477, 4.55844487985, 4.57383098262, 4.57285771934, 4.51914315648, 4.47677655262, 4.40075650022, 4.31069949379, 4.20483735936, 4.08985563932, 3.82931757126, 3.74220276467, 3.54415796922, 3.38732428502, 3.24931446473, 3.23421422609, 3.22701537997, 3.21972125648, 3.08979310611, 2.95152261813, 2.330753331, 2.05553464181, 1.82577817774, 1.5860853279, 1.4621]) # (Array, m): chord distribution for reference section, thickness of structural layup scaled with reference thickness (fixed t/c for this case) for i in range(ncomp): webLoc = [] if web1[i] != -1: webLoc.append(web1[i]) if web2[i] != -1: webLoc.append(web2[i]) if web3[i] != -1: webLoc.append(web3[i]) upper[i], lower[i], webs[i] = CompositeSection.initFromPreCompLayupFile(os.path.join(basepath, 'layup_' + str(i+1) + '.inp'), webLoc, materials) profile[i] = Profile.initFromPreCompFile(os.path.join(basepath, 'shape_' + str(i+1) + '.inp')) rotor.materials = materials # (List): list of all Orthotropic2DMaterial objects used in defining the geometry rotor.upperCS = upper # (List): list of CompositeSection objections defining the properties for upper surface rotor.lowerCS = lower # (List): list of CompositeSection objections defining the properties for lower surface rotor.websCS = webs # (List): list of CompositeSection objections defining the properties for shear webs rotor.profile = profile # (List): airfoil shape at each radial position # -------------------------------------- # --- fatigue --- rotor.rstar_damage = np.array([0.000, 0.022, 0.067, 0.111, 0.167, 0.233, 0.300, 0.367, 0.433, 0.500, 0.567, 0.633, 0.700, 0.767, 0.833, 0.889, 0.933, 0.978]) # (Array): nondimensional radial locations of damage equivalent moments rotor.Mxb_damage = 1e3*np.array([2.3743E+003, 2.0834E+003, 1.8108E+003, 1.5705E+003, 1.3104E+003, 1.0488E+003, 8.2367E+002, 6.3407E+002, 4.7727E+002, 3.4804E+002, 2.4458E+002, 1.6339E+002, 1.0252E+002, 5.7842E+001, 2.7349E+001, 1.1262E+001, 3.8549E+000, 4.4738E-001]) # (Array, N*m): damage equivalent moments about blade c.s. x-direction rotor.Myb_damage = 1e3*np.array([2.7732E+003, 2.8155E+003, 2.6004E+003, 2.3933E+003, 2.1371E+003, 1.8459E+003, 1.5582E+003, 1.2896E+003, 1.0427E+003, 8.2015E+002, 6.2449E+002, 4.5229E+002, 3.0658E+002, 1.8746E+002, 9.6475E+001, 4.2677E+001, 1.5409E+001, 1.8426E+000]) # (Array, N*m): damage equivalent moments about blade c.s. y-direction rotor.strain_ult_spar = 1.0e-2 # (Float): ultimate strain in spar cap rotor.strain_ult_te = 2500*1e-6 * 2 # (Float): uptimate strain in trailing-edge panels, note that I am putting a factor of two for the damage part only. rotor.eta_damage = 1.35*1.3*1.0 # (Float): safety factor for fatigue rotor.m_damage = 10.0 # (Float): slope of S-N curve for fatigue analysis rotor.N_damage = 365*24*3600*20.0 # (Float): number of cycles used in fatigue analysis TODO: make function of rotation speed # ---------------- # ================= # === nacelle ====== nacelle.L_ms = 1.0 # (Float, m): main shaft length downwind of main bearing in low-speed shaft nacelle.L_mb = 2.5 # (Float, m): main shaft length in low-speed shaft nacelle.h0_front = 1.7 # (Float, m): height of Ibeam in bedplate front nacelle.h0_rear = 1.35 # (Float, m): height of Ibeam in bedplate rear # TODO: sync with rotor drivetrainType variable nacelle.drivetrain_design = 'geared' nacelle.crane = True # (Bool): flag for presence of crane nacelle.bevel = 0 # (Int): Flag for the presence of a bevel stage - 1 if present, 0 if not nacelle.gear_configuration = 'eep' # (Str): tring that represents the configuration of the gearbox (stage number and types) nacelle.Np = [3, 3, 1] # (Array): number of planets in each stage nacelle.ratio_type = 'optimal' # (Str): optimal or empirical stage ratios nacelle.shaft_type = 'normal' # (Str): normal or short shaft length #nacelle.shaft_angle = 5.0 # (Float, deg): Angle of the LSS inclindation with respect to the horizontal nacelle.shaft_ratio = 0.10 # (Float): Ratio of inner diameter to outer diameter. Leave zero for solid LSS #nacelle.shrink_disc_mass = 1000.0 # (Float, kg): Mass of the shrink disc nacelle.mb1Type = 'CARB' # (Str): Main bearing type: CARB, TRB or SRB nacelle.mb2Type = 'SRB' # (Str): Second bearing type: CARB, TRB or SRB nacelle.yaw_motors_number = 8.0 # (Float): number of yaw motors nacelle.uptower_transformer = True nacelle.flange_length = 0.5 #m nacelle.gearbox_cm = 0.1 nacelle.hss_length = 1.5 nacelle.overhang = 5.0 #TODO - should come from turbine configuration level nacelle.check_fatigue = 0 #0 if no fatigue check, 1 if parameterized fatigue check, 2 if known loads inputs # TODO: should come from rotor (these are FAST outputs) nacelle.DrivetrainEfficiency = 0.95 nacelle.rotor_bending_moment_x = 330770.0# Nm nacelle.rotor_bending_moment_y = -16665000.0 # Nm nacelle.rotor_bending_moment_z = 2896300.0 # Nm nacelle.rotor_force_x = 599610.0 # N nacelle.rotor_force_y = 186780.0 # N nacelle.rotor_force_z = -842710.0 # N #nacelle.h0_rear = 1.35 # only used in drive smooth #nacelle.h0_front = 1.7 # ================= # === jacket === #--- Set Jacket Input Parameters ---# Jcktins=JcktGeoInputs() Jcktins.nlegs =4 Jcktins.nbays =5 Jcktins.batter=12. Jcktins.dck_botz =16. Jcktins.dck_width=2*6. Jcktins.weld2D =0.5 Jcktins.VPFlag = True #vertical pile T/F; to enable piles in frame3DD set pileinputs.ndiv>0 Jcktins.clamped= False #whether or not the bottom of the structure is rigidly connected. Use False when equivalent spring constants are being used. Jcktins.AFflag = False #whether or not to use apparent fixity piles Jcktins.PreBuildTPLvl = 5 #if >0, the TP is prebuilt according to rules per PreBuildTP #Soil inputs Soilinputs=SoilGeoInputs() Soilinputs.zbots =-np.array([3.,5.,7.,15.,30.,50.]) Soilinputs.gammas =np.array([10000.,10000.,10000.,10000.,10000.,10000.]) Soilinputs.cus =np.array([60000.,60000.,60000.,60000.,60000.,60000.]) Soilinputs.phis =np.array([26.,26.,26.,26.,26.,26])#np.array([36.,33.,26.,37.,35.,37.5])#np.array([36.,33.,26.,37.,35.,37.5]) Soilinputs.delta =25. Soilinputs.sndflg =True Soilinputs.PenderSwtch =False #True Soilinputs.SoilSF =1. Soilinputs2=copy.copy(Soilinputs) #Parked case. We assume same stiffness although this may not be the case under a different load #Water and wind inputs Waterinputs=WaterInputs() Waterinputs.wdepth =30. Waterinputs.wlevel =30. #Distance from bottom of structure to surface THIS, I believe is no longer needed as piles may be negative in z, to check and remove in case Waterinputs.T=12. #Wave Period Waterinputs.HW=10. #Wave Height Waterinputs.Cd=3. #Drag Coefficient, enhanced to account for marine growth and other members not calculated Waterinputs.Cm=8.#2. #ADded mass Coefficient Waterinputs2=copy.copy(Waterinputs) #PARKED CONDITIONS - still max wave here Waterinputs.T=8. #Wave Period Waterinputs.HW=4. #Wave Height Windinputs=WindInputs() Windinputs.Cdj=4. #Drag Coefficient for jacket members, enhanced to account for TP drag not calculated otherwise Windinputs.Cdt=2 #Drag Coefficient for tower, enhanced to account for TP drag not calculated otherwise Windinputs.HH=100. #CHECK HOW THIS COMPLIES.... Windinputs.U50HH=30. #assumed gust speed ## if turbine_jacket ##Windinputs.HH=90. #CHECK HOW THIS COMPLIES.... ##Windinputs.U50HH=11.7373200354 # using rated loads ##Windinputs.rho = 1.225 ##Windinputs.mu = 1.81206e-05 Windinputs2=copy.copy(Windinputs) Windinputs2.U50HH=70. #assumed gust speed #Pile data Pilematin=MatInputs() Pilematin.matname=np.array(['steel']) Pilematin.E=np.array([ 25.e9]) Dpile=2.5#0.75 # 2.0 tpile=0.01 Lp=20. #45 Pileinputs=PileGeoInputs() Pileinputs.Pilematins=Pilematin Pileinputs.ndiv=0 #3 Pileinputs.Dpile=Dpile Pileinputs.tpile=tpile Pileinputs.Lp=Lp #[m] Embedment length #Legs data legmatin=MatInputs() legmatin.matname=(['heavysteel','heavysteel','heavysteel','heavysteel']) #legmatin.E=np.array([2.0e11]) Dleg=np.array([1.5,1.5,1.5,1.5,1.5,1.5]) tleg=1.5*np.array([0.0254]).repeat(Dleg.size) leginputs=LegGeoInputs() leginputs.legZbot = 1.0 leginputs.ndiv=1 leginputs.legmatins=legmatin leginputs.Dleg0=Dleg[0] leginputs.tleg0=tleg[0] legbot_stmphin =1.5 #Distance from bottom of leg to second joint along z; must be>0 #Xbrc data Xbrcmatin=MatInputs() Xbrcmatin.matname=np.array(['heavysteel']).repeat(Jcktins.nbays) #Xbrcmatin.E=np.array([ 2.2e11, 2.0e11,2.0e11,2.0e11,2.0e11]) Dbrc=np.array([1.,1.,1.0,1.0,1.0]) tbrc=np.array([1.,1.,1.0,1.0,1.0])*0.0254 Xbrcinputs=XBrcGeoInputs() Xbrcinputs.Dbrc0=Dbrc[0] Xbrcinputs.tbrc0=tbrc[0] Xbrcinputs.ndiv=2#2 Xbrcinputs.Xbrcmatins=Xbrcmatin Xbrcinputs.precalc=False #True #This can be set to true if we want Xbraces to be precalculated in D and t, in which case the above set Dbrc and tbrc would be overwritten #Mbrc data Mbrcmatin=MatInputs() Mbrcmatin.matname=np.array(['heavysteel']) #Mbrcmatin.E=np.array([ 2.5e11]) Dbrc_mud=1.5 Mbrcinputs=MudBrcGeoInputs() Mbrcinputs.Dbrc_mud=Dbrc_mud Mbrcinputs.ndiv=2 Mbrcinputs.Mbrcmatins=Mbrcmatin Mbrcinputs.precalc=False #True #This can be set to true if we want Mudbrace to be precalculated in D and t, in which case the above set Dbrc_mud and tbrc_mud would be overwritten #Hbrc data Hbrcmatin=MatInputs() Hbrcmatin.matname=np.array(['heavysteel']) Hbrcmatin.E=np.array([ 2.5e11]) Dbrc_hbrc=1.1 Hbrcinputs=HBrcGeoInputs() Hbrcinputs.Dbrch=Dbrc_hbrc Hbrcinputs.ndiv=0#2 Hbrcinputs.Hbrcmatins=Hbrcmatin Hbrcinputs.precalc=True #This can be set to true if we want Hbrace to be set=Xbrace top D and t, in which case the above set Dbrch and tbrch would be overwritten #TP data TPlumpinputs=TPlumpMass() TPlumpinputs.mass=200.e3 #[kg] TPstmpsmatin=MatInputs() TPbrcmatin=MatInputs() TPstemmatin=MatInputs() TPbrcmatin.matname=np.array(['heavysteel']) #TPbrcmatin.E=np.array([ 2.5e11]) TPstemmatin.matname=np.array(['heavysteel']).repeat(2) #TPstemmatin.E=np.array([ 2.1e11]).repeat(2) TPinputs=TPGeoInputs() TPinputs.TPbrcmatins=TPbrcmatin TPinputs.TPstemmatins=TPstemmatin TPinputs.TPstmpmatins=TPstmpsmatin TPinputs.Dstrut=leginputs.Dleg[-1] TPinputs.tstrut=leginputs.tleg[-1] TPinputs.Dgir=Dbrc_hbrc TPinputs.tgir=0.0254 TPinputs.Dbrc=1.1 TPinputs.Dbrc=TPinputs.Dgir TPinputs.tbrc=TPinputs.tgir TPinputs.hstump=1.0#1.0 TPinputs.Dstump=1.25#1.0 TPinputs.stumpndiv=1#2 TPinputs.brcndiv=1#2 TPinputs.girndiv=1#2 TPinputs.strutndiv=1#2 TPinputs.stemndiv=1#2 TPinputs.nstems=3 TPinputs.Dstem=np.array([6.]).repeat(TPinputs.nstems) TPinputs.tstem=np.array([0.1,0.11,0.11]) TPinputs.hstem=np.array([6./TPinputs.nstems]).repeat(TPinputs.nstems) #Tower data Twrmatin=MatInputs() Twrmatin.matname=np.array(['heavysteel']) #Twrmatin.E=np.array([ 2.77e11]) Twrinputs=TwrGeoInputs() Twrinputs.Twrmatins=Twrmatin #Twrinputs.Htwr=70. #Trumped by HH Twrinputs.Htwr2frac=0.2 #fraction of tower height with constant x-section Twrinputs.ndiv=np.array([6,12]) #ndiv for uniform and tapered section Twrinputs.DeltaZmax= 6. #[m], maximum FE element length allowed in the tower members (i.e. the uniform and the tapered members) Twrinputs.Db=5.6 Twrinputs.DTRb=130. Twrinputs.DTRt=150. Twrinputs.Dt=0.55*Twrinputs.Db ## if turbine_jacket ##Twrinputs.Dt = 3.87 TwrRigidTop=True #False #False=Account for RNA via math rather than a physical rigidmember #RNA data RNAins=RNAprops() RNAins.mass=3*350.e3 RNAins.I[0]=86.579E+6 RNAins.I[1]=53.530E+6 RNAins.I[2]=58.112E+6 RNAins.CMoff[2]=2.34 RNAins.yawangle=45. #angle with respect to global X, CCW looking from above, wind from left RNAins.rna_weightM=True ## if turbine_jacket ##RNAins.mass=285598.806453 ##RNAins.I = np.array([1.14930678e8, 2.20354030e7, 1.87597425e7, 0.0, 5.03710467e5, 0.0]) ##RNAins.CMoff = np.array([-1.13197635, 0.0, 0.50875268]) ##RNAins.yawangle=0.0 #angle with respect to global X, CCW looking from above, wind from left #RNAins.rna_weightM=True RNAins2=copy.copy(RNAins) #PARKED CASE, for now assume the same #RNA loads Fx-z, Mxx-zz RNA_F=np.array([1000.e3,0.,0.,0.,0.,0.]) #operational RNA_F2=np.array([500.e3,0.,0.,0.,0.,0.]) #Parked ## if turbine_jacket ##RNA_F=np.array([1284744.19620519,0.,-2914124.84400512,3963732.76208099,-2275104.79420872,-346781.68192839]) #Frame3DD parameters FrameAuxIns=Frame3DDaux() FrameAuxIns.sh_fg=1 #shear flag-->Timoshenko FrameAuxIns.deltaz=5. FrameAuxIns.geo_fg=0 FrameAuxIns.nModes = 6 # number of desired dynamic modes of vibration FrameAuxIns.Mmethod = 1 # 1: subspace Jacobi 2: Stodola FrameAuxIns.lump = 0 # 0: consistent mass ... 1: lumped mass matrix FrameAuxIns.tol = 1e-9 # mode shape tolerance FrameAuxIns.shift = 0.0 # shift value ... for unrestrained structures FrameAuxIns.gvector=np.array([0.,0.,-9.8065]) #GRAVITY ## if turbine_jacket ##FrameAuxIns.gvector=np.array([0.,0.,-9.81]) #GRAVITY #Decide whether or not to consider DLC 6.1 as well twodlcs=False #-----Launch the assembly-----# #turbine.jacket=JacketSE(Jcktins.clamped,Jcktins.AFflag,twodlcs=twodlcs) #turbine.jacket=set_as_top(JacketSE(Jcktins.clamped,Jcktins.AFflag,twodlcs=twodlcs)) ##(Jcktins.PreBuildTPLvl>0), #Pass all inputs to assembly lcoe_se.jacket.JcktGeoIn=Jcktins lcoe_se.jacket.Soilinputs=Soilinputs lcoe_se.jacket.Soilinputs2=Soilinputs2 #Parked conditions lcoe_se.jacket.Waterinputs=Waterinputs lcoe_se.jacket.Windinputs=Windinputs lcoe_se.jacket.RNA_F=RNA_F lcoe_se.jacket.Waterinputs2=Waterinputs2 #Parked conditions lcoe_se.jacket.Windinputs2=Windinputs2 #Parked conditions lcoe_se.jacket.RNA_F2=RNA_F2 #Parked conditions lcoe_se.jacket.Pileinputs=Pileinputs lcoe_se.jacket.leginputs=leginputs #lcoe_se.jacket.legbot_stmphin =legbot_stmphin lcoe_se.jacket.Xbrcinputs=Xbrcinputs lcoe_se.jacket.Mbrcinputs=Mbrcinputs lcoe_se.jacket.Hbrcinputs=Hbrcinputs lcoe_se.jacket.TPlumpinputs=TPlumpinputs lcoe_se.jacket.TPinputs=TPinputs lcoe_se.jacket.RNAinputs=RNAins lcoe_se.jacket.RNAinputs2=RNAins2 lcoe_se.jacket.Twrinputs=Twrinputs lcoe_se.jacket.TwrRigidTop=TwrRigidTop lcoe_se.jacket.FrameAuxIns=FrameAuxIns # === Run default assembly and print results lcoe_se.run() # ==== # === Print === print "Key Turbine Outputs for NREL 5 MW Reference Turbine" print 'mass rotor blades:{0:.2f} (kg) '.format(lcoe_se.rotor.mass_all_blades) print 'mass hub system: {0:.2f} (kg) '.format(lcoe_se.hub.hub_system_mass) print 'mass nacelle: {0:.2f} (kg) '.format(lcoe_se.nacelle.nacelle_mass) print 'mass tower: {0:.2f} (kg) '.format(lcoe_se.jacket.Tower.Twrouts.mass) print 'maximum tip deflection: {0:.2f} (m) '.format(lcoe_se.maxdeflection.max_tip_deflection) print 'ground clearance: {0:.2f} (m) '.format(lcoe_se.maxdeflection.ground_clearance) print print "Key Plant Outputs for wind plant with NREL 5 MW Turbine" #print "LCOE: ${0:.4f} USD/kWh".format(lcoe_se.lcoe) # not in base output set (add to assembly output if desired) print "COE: ${0:.4f} USD/kWh".format(lcoe_se.coe) print print "AEP per turbine: {0:.1f} kWh/turbine".format(lcoe_se.net_aep / lcoe_se.turbine_number) print "Turbine Cost: ${0:.2f} USD".format(lcoe_se.turbine_cost) print "BOS costs per turbine: ${0:.2f} USD/turbine".format(lcoe_se.bos_costs / lcoe_se.turbine_number) print "OPEX per turbine: ${0:.2f} USD/turbine".format(lcoe_se.avg_annual_opex / lcoe_se.turbine_number)
def configure_nrel5mw_turbine_with_jacket(turbine,wind_class='I',sea_depth = 0.0): """ Inputs: rotor = RotorSE() nacelle = DriveSE() jacket = JacketSE() wind_class : str ('I', 'III', 'Offshore' - selected wind class for project) sea_depth : float (sea depth if an offshore wind plant) """ # ================= # === Turbine === turbine.rho = 1.225 # (Float, kg/m**3): density of air turbine.mu = 1.81206e-5 # (Float, kg/m/s): dynamic viscosity of air turbine.shear_exponent = 0.2 # (Float): shear exponent turbine.hub_height = 90.0 # (Float, m): hub height turbine.turbine_class = 'I' # (Enum): IEC turbine class turbine.turbulence_class = 'B' # (Enum): IEC turbulence class class turbine.cdf_reference_height_wind_speed = 90.0 # (Float): reference hub height for IEC wind speed (used in CDF calculation) turbine.g = 9.81 # (Float, m/s**2): acceleration of gravity # ====================== # === rotor === # --- blade grid --- turbine.rotor.initial_aero_grid = np.array([0.02222276, 0.06666667, 0.11111057, 0.16666667, 0.23333333, 0.3, 0.36666667, 0.43333333, 0.5, 0.56666667, 0.63333333, 0.7, 0.76666667, 0.83333333, 0.88888943, 0.93333333, 0.97777724]) # (Array): initial aerodynamic grid on unit radius turbine.rotor.initial_str_grid = np.array([0.0, 0.00492790457512, 0.00652942887106, 0.00813095316699, 0.00983257273154, 0.0114340970275, 0.0130356213234, 0.02222276, 0.024446481932, 0.026048006228, 0.06666667, 0.089508406455, 0.11111057, 0.146462614229, 0.16666667, 0.195309105255, 0.23333333, 0.276686558545, 0.3, 0.333640766319, 0.36666667, 0.400404310407, 0.43333333, 0.5, 0.520818918408, 0.56666667, 0.602196371696, 0.63333333, 0.667358391486, 0.683573824984, 0.7, 0.73242031601, 0.76666667, 0.83333333, 0.88888943, 0.93333333, 0.97777724, 1.0]) # (Array): initial structural grid on unit radius turbine.rotor.idx_cylinder_aero = 3 # (Int): first idx in r_aero_unit of non-cylindrical section, constant twist inboard of here turbine.rotor.idx_cylinder_str = 14 # (Int): first idx in r_str_unit of non-cylindrical section turbine.rotor.hubFraction = 0.025 # (Float): hub location as fraction of radius # ------------------ # --- blade geometry --- turbine.rotor.r_aero = np.array([0.02222276, 0.06666667, 0.11111057, 0.2, 0.23333333, 0.3, 0.36666667, 0.43333333, 0.5, 0.56666667, 0.63333333, 0.64, 0.7, 0.83333333, 0.88888943, 0.93333333, 0.97777724]) # (Array): new aerodynamic grid on unit radius turbine.rotor.r_max_chord = 0.23577 # (Float): location of max chord on unit radius turbine.rotor.chord_sub = [3.2612, 4.5709, 3.3178, 1.4621] # (Array, m): chord at control points. defined at hub, then at linearly spaced locations from r_max_chord to tip turbine.rotor.theta_sub = [13.2783, 7.46036, 2.89317, -0.0878099] # (Array, deg): twist at control points. defined at linearly spaced locations from r[idx_cylinder] to tip turbine.rotor.precurve_sub = [0.0, 0.0, 0.0] # (Array, m): precurve at control points. defined at same locations at chord, starting at 2nd control point (root must be zero precurve) turbine.rotor.delta_precurve_sub = [0.0, 0.0, 0.0] # (Array, m): adjustment to precurve to account for curvature from loading turbine.rotor.sparT = [0.05, 0.047754, 0.045376, 0.031085, 0.0061398] # (Array, m): spar cap thickness parameters turbine.rotor.teT = [0.1, 0.09569, 0.06569, 0.02569, 0.00569] # (Array, m): trailing-edge thickness parameters turbine.rotor.bladeLength = 61.5 # (Float, m): blade length (if not precurved or swept) otherwise length of blade before curvature turbine.rotor.delta_bladeLength = 0.0 # (Float, m): adjustment to blade length to account for curvature from loading turbine.rotor.precone = 2.5 # (Float, deg): precone angle turbine.rotor.tilt = 5.0 # (Float, deg): shaft tilt turbine.rotor.yaw = 0.0 # (Float, deg): yaw error turbine.rotor.nBlades = 3 # (Int): number of blades # ------------------ # --- airfoil files --- import rotorse #basepath = os.path.join('5MW_files', '5MW_AFFiles') basepath = os.path.join('..','reference_turbines','nrel5mw','airfoils') # load all airfoils airfoil_types = [0]*8 airfoil_types[0] = os.path.join(basepath, 'Cylinder1.dat') airfoil_types[1] = os.path.join(basepath, 'Cylinder2.dat') airfoil_types[2] = os.path.join(basepath, 'DU40_A17.dat') airfoil_types[3] = os.path.join(basepath, 'DU35_A17.dat') airfoil_types[4] = os.path.join(basepath, 'DU30_A17.dat') airfoil_types[5] = os.path.join(basepath, 'DU25_A17.dat') airfoil_types[6] = os.path.join(basepath, 'DU21_A17.dat') airfoil_types[7] = os.path.join(basepath, 'NACA64_A17.dat') # place at appropriate radial stations af_idx = [0, 0, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7] n = len(af_idx) af = [0]*n for i in range(n): af[i] = airfoil_types[af_idx[i]] turbine.rotor.airfoil_files = af # (List): names of airfoil file # ---------------------- # --- control --- turbine.rotor.control.Vin = 3.0 # (Float, m/s): cut-in wind speed turbine.rotor.control.Vout = 25.0 # (Float, m/s): cut-out wind speed turbine.rotor.control.ratedPower = 5e6 # (Float, W): rated power turbine.rotor.control.minOmega = 0.0 # (Float, rpm): minimum allowed rotor rotation speed turbine.rotor.control.maxOmega = 12.0 # (Float, rpm): maximum allowed rotor rotation speed turbine.rotor.control.tsr = 7.55 # (Float): tip-speed ratio in Region 2 (should be optimized externally) turbine.rotor.control.pitch = 0.0 # (Float, deg): pitch angle in region 2 (and region 3 for fixed pitch machines) turbine.rotor.pitch_extreme = 0.0 # (Float, deg): worst-case pitch at survival wind condition turbine.rotor.azimuth_extreme = 0.0 # (Float, deg): worst-case azimuth at survival wind condition turbine.rotor.VfactorPC = 0.7 # (Float): fraction of rated speed at which the deflection is assumed to representative throughout the power curve calculation # ---------------------- # --- aero and structural analysis options --- turbine.rotor.nSector = 4 # (Int): number of sectors to divide rotor face into in computing thrust and power turbine.rotor.npts_coarse_power_curve = 20 # (Int): number of points to evaluate aero analysis at turbine.rotor.npts_spline_power_curve = 200 # (Int): number of points to use in fitting spline to power curve turbine.rotor.AEP_loss_factor = 1.0 # (Float): availability and other losses (soiling, array, etc.) turbine.rotor.drivetrainType = 'geared' # (Enum) turbine.rotor.nF = 5 # (Int): number of natural frequencies to compute turbine.rotor.dynamic_amplication_tip_deflection = 1.35 # (Float): a dynamic amplification factor to adjust the static deflection calculation # ---------------------- # --- materials and composite layup --- #basepath = os.path.join('5MW_files', '5MW_PrecompFiles') basepath = os.path.join('..', 'reference_turbines','nrel5mw','blade') materials = Orthotropic2DMaterial.listFromPreCompFile(os.path.join(basepath, 'materials.inp')) ncomp = len(turbine.rotor.initial_str_grid) upper = [0]*ncomp lower = [0]*ncomp webs = [0]*ncomp profile = [0]*ncomp turbine.rotor.leLoc = np.array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.498, 0.497, 0.465, 0.447, 0.43, 0.411, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4]) # (Array): array of leading-edge positions from a reference blade axis (usually blade pitch axis). locations are normalized by the local chord length. e.g. leLoc[i] = 0.2 means leading edge is 0.2*chord[i] from reference axis. positive in -x direction for airfoil-aligned coordinate system turbine.rotor.sector_idx_strain_spar = [2]*ncomp # (Array): index of sector for spar (PreComp definition of sector) turbine.rotor.sector_idx_strain_te = [3]*ncomp # (Array): index of sector for trailing-edge (PreComp definition of sector) web1 = np.array([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 0.4114, 0.4102, 0.4094, 0.3876, 0.3755, 0.3639, 0.345, 0.3342, 0.3313, 0.3274, 0.323, 0.3206, 0.3172, 0.3138, 0.3104, 0.307, 0.3003, 0.2982, 0.2935, 0.2899, 0.2867, 0.2833, 0.2817, 0.2799, 0.2767, 0.2731, 0.2664, 0.2607, 0.2562, 0.1886, -1.0]) web2 = np.array([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 0.5886, 0.5868, 0.5854, 0.5508, 0.5315, 0.5131, 0.4831, 0.4658, 0.4687, 0.4726, 0.477, 0.4794, 0.4828, 0.4862, 0.4896, 0.493, 0.4997, 0.5018, 0.5065, 0.5101, 0.5133, 0.5167, 0.5183, 0.5201, 0.5233, 0.5269, 0.5336, 0.5393, 0.5438, 0.6114, -1.0]) web3 = np.array([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0]) turbine.rotor.chord_str_ref = np.array([3.2612, 3.3100915356, 3.32587052924, 3.34159388653, 3.35823798667, 3.37384375335, 3.38939112914, 3.4774055542, 3.49839685, 3.51343645709, 3.87017220335, 4.04645623801, 4.19408216643, 4.47641008477, 4.55844487985, 4.57383098262, 4.57285771934, 4.51914315648, 4.47677655262, 4.40075650022, 4.31069949379, 4.20483735936, 4.08985563932, 3.82931757126, 3.74220276467, 3.54415796922, 3.38732428502, 3.24931446473, 3.23421422609, 3.22701537997, 3.21972125648, 3.08979310611, 2.95152261813, 2.330753331, 2.05553464181, 1.82577817774, 1.5860853279, 1.4621]) # (Array, m): chord distribution for reference section, thickness of structural layup scaled with reference thickness (fixed t/c for this case) for i in range(ncomp): webLoc = [] if web1[i] != -1: webLoc.append(web1[i]) if web2[i] != -1: webLoc.append(web2[i]) if web3[i] != -1: webLoc.append(web3[i]) upper[i], lower[i], webs[i] = CompositeSection.initFromPreCompLayupFile(os.path.join(basepath, 'layup_' + str(i+1) + '.inp'), webLoc, materials) profile[i] = Profile.initFromPreCompFile(os.path.join(basepath, 'shape_' + str(i+1) + '.inp')) turbine.rotor.materials = materials # (List): list of all Orthotropic2DMaterial objects used in defining the geometry turbine.rotor.upperCS = upper # (List): list of CompositeSection objections defining the properties for upper surface turbine.rotor.lowerCS = lower # (List): list of CompositeSection objections defining the properties for lower surface turbine.rotor.websCS = webs # (List): list of CompositeSection objections defining the properties for shear webs turbine.rotor.profile = profile # (List): airfoil shape at each radial position # -------------------------------------- strain_ult_spar = 1.0e-2 strain_ult_te = 2500*1e-6 # --- fatigue --- turbine.rotor.rstar_damage = np.array([0.000, 0.022, 0.067, 0.111, 0.167, 0.233, 0.300, 0.367, 0.433, 0.500, 0.567, 0.633, 0.700, 0.767, 0.833, 0.889, 0.933, 0.978]) # (Array): nondimensional radial locations of damage equivalent moments turbine.rotor.Mxb_damage = 1e3*np.array([2.3743E+003, 2.0834E+003, 1.8108E+003, 1.5705E+003, 1.3104E+003, 1.0488E+003, 8.2367E+002, 6.3407E+002, 4.7727E+002, 3.4804E+002, 2.4458E+002, 1.6339E+002, 1.0252E+002, 5.7842E+001, 2.7349E+001, 1.1262E+001, 3.8549E+000, 4.4738E-001]) # (Array, N*m): damage equivalent moments about blade c.s. x-direction turbine.rotor.Myb_damage = 1e3*np.array([2.7732E+003, 2.8155E+003, 2.6004E+003, 2.3933E+003, 2.1371E+003, 1.8459E+003, 1.5582E+003, 1.2896E+003, 1.0427E+003, 8.2015E+002, 6.2449E+002, 4.5229E+002, 3.0658E+002, 1.8746E+002, 9.6475E+001, 4.2677E+001, 1.5409E+001, 1.8426E+000]) # (Array, N*m): damage equivalent moments about blade c.s. y-direction turbine.rotor.strain_ult_spar = 1.0e-2 # (Float): ultimate strain in spar cap turbine.rotor.strain_ult_te = 2500*1e-6 * 2 # (Float): uptimate strain in trailing-edge panels, note that I am putting a factor of two for the damage part only. turbine.rotor.eta_damage = 1.35*1.3*1.0 # (Float): safety factor for fatigue turbine.rotor.m_damage = 10.0 # (Float): slope of S-N curve for fatigue analysis turbine.rotor.N_damage = 365*24*3600*20.0 # (Float): number of cycles used in fatigue analysis TODO: make function of rotation speed # ---------------- # ================= # === nacelle ====== turbine.nacelle.L_ms = 1.0 # (Float, m): main shaft length downwind of main bearing in low-speed shaft turbine.nacelle.L_mb = 2.5 # (Float, m): main shaft length in low-speed shaft turbine.nacelle.h0_front = 1.7 # (Float, m): height of Ibeam in bedplate front turbine.nacelle.h0_rear = 1.35 # (Float, m): height of Ibeam in bedplate rear turbine.nacelle.drivetrain_design = 'geared' turbine.nacelle.crane = True # (Bool): flag for presence of crane turbine.nacelle.bevel = 0 # (Int): Flag for the presence of a bevel stage - 1 if present, 0 if not turbine.nacelle.gear_configuration = 'eep' # (Str): tring that represents the configuration of the gearbox (stage number and types) turbine.nacelle.Np = [3, 3, 1] # (Array): number of planets in each stage turbine.nacelle.ratio_type = 'optimal' # (Str): optimal or empirical stage ratios turbine.nacelle.shaft_type = 'normal' # (Str): normal or short shaft length #turbine.nacelle.shaft_angle = 5.0 # (Float, deg): Angle of the LSS inclindation with respect to the horizontal turbine.nacelle.shaft_ratio = 0.10 # (Float): Ratio of inner diameter to outer diameter. Leave zero for solid LSS turbine.nacelle.carrier_mass = 8000.0 # estimated for 5 MW turbine.nacelle.mb1Type = 'CARB' # (Str): Main bearing type: CARB, TRB or SRB turbine.nacelle.mb2Type = 'SRB' # (Str): Second bearing type: CARB, TRB or SRB turbine.nacelle.yaw_motors_number = 8.0 # (Float): number of yaw motors turbine.nacelle.uptower_transformer = True turbine.nacelle.flange_length = 0.5 #m turbine.nacelle.gearbox_cm = 0.1 turbine.nacelle.hss_length = 1.5 turbine.nacelle.overhang = 5.0 #TODO - should come from turbine configuration level turbine.nacelle.check_fatigue = 0 #0 if no fatigue check, 1 if parameterized fatigue check, 2 if known loads inputs # TODO: should come from rotor (these are FAST outputs) turbine.nacelle.DrivetrainEfficiency = 0.95 turbine.nacelle.rotor_bending_moment_x = 330770.0# Nm turbine.nacelle.rotor_bending_moment_y = -16665000.0 # Nm turbine.nacelle.rotor_bending_moment_z = 2896300.0 # Nm turbine.nacelle.rotor_force_x = 599610.0 # N turbine.nacelle.rotor_force_y = 186780.0 # N turbine.nacelle.rotor_force_z = -842710.0 # N #turbine.nacelle.h0_rear = 1.35 # only used in drive smooth #turbine.nacelle.h0_front = 1.7 # ================= if wind_class == 'I': turbine.rotor.turbine_class = 'I' elif wind_class == 'III': turbine.rotor.turbine_class = 'III' # for fatigue based analysis of class III wind turbine turbine.tower.M_DEL = 1.028713178 * 1e3*np.array([7.8792E+003, 7.7507E+003, 7.4918E+003, 7.2389E+003, 6.9815E+003, 6.7262E+003, 6.4730E+003, 6.2174E+003, 5.9615E+003, 5.7073E+003, 5.4591E+003, 5.2141E+003, 4.9741E+003, 4.7399E+003, 4.5117E+003, 4.2840E+003, 4.0606E+003, 3.8360E+003, 3.6118E+003, 3.3911E+003, 3.1723E+003, 2.9568E+003, 2.7391E+003, 2.5294E+003, 2.3229E+003, 2.1246E+003, 1.9321E+003, 1.7475E+003, 1.5790E+003, 1.4286E+003, 1.3101E+003, 1.2257E+003, 1.1787E+003, 1.1727E+003, 1.1821E+003]) turbine.rotor.Mxb_damage = 1e3*np.array([2.3617E+003, 2.0751E+003, 1.8051E+003, 1.5631E+003, 1.2994E+003, 1.0388E+003, 8.1384E+002, 6.2492E+002, 4.6916E+002, 3.4078E+002, 2.3916E+002, 1.5916E+002, 9.9752E+001, 5.6139E+001, 2.6492E+001, 1.0886E+001, 3.7210E+000, 4.3206E-001]) turbine.rotor.Myb_damage = 1e3*np.array([2.5492E+003, 2.6261E+003, 2.4265E+003, 2.2308E+003, 1.9882E+003, 1.7184E+003, 1.4438E+003, 1.1925E+003, 9.6251E+002, 7.5564E+002, 5.7332E+002, 4.1435E+002, 2.8036E+002, 1.7106E+002, 8.7732E+001, 3.8678E+001, 1.3942E+001, 1.6600E+000]) elif wind_class == 'Offshore': turbine.rotor.turbine_class = 'I' # ================= # === jacket === #--- Set Jacket Input Parameters ---# Jcktins=JcktGeoInputs() Jcktins.nlegs =4 Jcktins.nbays =5 Jcktins.batter=12. Jcktins.dck_botz =16. Jcktins.weld2D =0.5 Jcktins.VPFlag = True #vertical pile T/F; to enable piles in frame3DD set pileinputs.ndiv>0 Jcktins.clamped= False #whether or not the bottom of the structure is rigidly connected. Use False when equivalent spring constants are being used. Jcktins.AFflag = False #whether or not to use apparent fixity piles Jcktins.PreBuildTPLvl = 2 #if >0, the TP is prebuilt according to rules per PreBuildTP #Soil inputs Soilinputs=SoilGeoInputs() Soilinputs.zbots =-np.array([3.,5.,7.,15.,30.,50.]) Soilinputs.gammas =np.array([10000.,10000.,10000.,10000.,10000.,10000.]) Soilinputs.cus =np.array([60000.,60000.,60000.,60000.,60000.,60000.]) Soilinputs.phis =np.array([26.,26.,26.,26.,26.,26])#np.array([36.,33.,26.,37.,35.,37.5])#np.array([36.,33.,26.,37.,35.,37.5]) Soilinputs.delta =25. Soilinputs.sndflg =True Soilinputs.PenderSwtch =False #True Soilinputs.SoilSF =1. #Water and wind inputs Waterinputs=WaterInputs() Waterinputs.wdepth =30. Waterinputs.wlevel =30. #Distance from bottom of structure to surface THIS, I believe is no longer needed as piles may be negative in z, to check and remove in case Waterinputs.T=12. #Wave Period Waterinputs.HW=10. #Wave Height '''Windinputs=WindInputs() Windinputs.HH=100. #CHECK HOW THIS COMPLIES.... Windinputs.U50HH=30. #assumed gust speed''' #RNA loads Fx-z, Mxx-zz #RNA_F=np.array([1000.e3,0.,0.,0.,0.,0.]) #Pile data Pilematin=MatInputs() Pilematin.matname=np.array(['steel']) Pilematin.E=np.array([ 25.e9]) Dpile=2.5#0.75 # 2.0 tpile=0.01 Lp=20. #45 Pileinputs=PileGeoInputs() Pileinputs.Pilematins=Pilematin Pileinputs.ndiv=0 #3 Pileinputs.Dpile=Dpile Pileinputs.tpile=tpile Pileinputs.Lp=Lp #[m] Embedment length #Legs data legmatin=MatInputs() legmatin.matname=(['steel','steel','steel','steel']) legmatin.E=np.array([2.0e11]) Dleg=np.array([2.0,1.8,1.8,1.8,1.8,1.8]) tleg=1.55*np.array([0.0254]).repeat(Dleg.size) leginputs=LegGeoInputs() leginputs.legZbot = 1.0 leginputs.ndiv=1 leginputs.legmatins=legmatin leginputs.Dleg=Dleg leginputs.tleg=tleg legbot_stmphin =1.5 #Distance from bottom of leg to second joint along z; must be>0 #Xbrc data Xbrcmatin=MatInputs() Xbrcmatin.matname=np.array(['steel']).repeat(Jcktins.nbays) Xbrcmatin.E=np.array([ 2.2e11, 2.0e11,2.0e11,2.0e11,2.0e11]) Dbrc=np.array([1.,1.,1.0,1.0,1.0]) tbrc=np.array([1.,1.,1.0,1.0,1.0])*0.0254 Xbrcinputs=XBrcGeoInputs() Xbrcinputs.Dbrc=Dbrc Xbrcinputs.tbrc=tbrc Xbrcinputs.ndiv=2#2 Xbrcinputs.Xbrcmatins=Xbrcmatin Xbrcinputs.precalc=True #This can be set to true if we want Xbraces to be precalculated in D and t, in which case the above set Dbrc and tbrc would be overwritten #Mbrc data Mbrcmatin=MatInputs() Mbrcmatin.matname=np.array(['steel']) Mbrcmatin.E=np.array([ 2.5e11]) Dbrc_mud=1.5 Mbrcinputs=MudBrcGeoInputs() Mbrcinputs.Dbrc_mud=Dbrc_mud Mbrcinputs.ndiv=2 Mbrcinputs.Mbrcmatins=Mbrcmatin Mbrcinputs.precalc=True #This can be set to true if we want Mudbrace to be precalculated in D and t, in which case the above set Dbrc_mud and tbrc_mud would be overwritten #Hbrc data Hbrcmatin=MatInputs() Hbrcmatin.matname=np.array(['steel']) Hbrcmatin.E=np.array([ 2.5e11]) Dbrc_hbrc=1.1 Hbrcinputs=HBrcGeoInputs() Hbrcinputs.Dbrch=Dbrc_hbrc Hbrcinputs.ndiv=0#2 Hbrcinputs.Hbrcmatins=Hbrcmatin Hbrcinputs.precalc=True #This can be set to true if we want Hbrace to be set=Xbrace top D and t, in which case the above set Dbrch and tbrch would be overwritten #TP data TPlumpinputs=TPlumpMass() TPlumpinputs.mass=300.e3 #[kg] TPstmpsmatin=MatInputs() TPbrcmatin=MatInputs() TPstemmatin=MatInputs() TPbrcmatin.matname=np.array(['steel']) TPbrcmatin.E=np.array([ 2.5e11]) TPstemmatin.matname=np.array(['steel']).repeat(2) TPstemmatin.E=np.array([ 2.1e11]).repeat(2) TPinputs=TPGeoInputs() TPinputs.TPbrcmatins=TPbrcmatin TPinputs.TPstemmatins=TPstemmatin TPinputs.TPstmpmatins=TPstmpsmatin TPinputs.Dstrut=1.6 TPinputs.Dgir=Dbrc_hbrc TPinputs.Dbrc=1.1 TPinputs.hstump=0.0#1.0 TPinputs.stumpndiv=1#2 TPinputs.brcndiv=1#2 TPinputs.girndiv=1#2 TPinputs.strutndiv=1#2 TPinputs.stemndiv=1#2 TPinputs.nstems=3 TPinputs.Dstem=np.array([6.]).repeat(TPinputs.nstems) TPinputs.tstem=np.array([0.1,0.11,0.11]) TPinputs.hstem=np.array([4.,3.,1.]) #Tower data Twrmatin=MatInputs() Twrmatin.matname=np.array(['steel']) Twrmatin.E=np.array([ 2.77e11]) Db=5.6 tb=0.05 Dt=Db*0.55 '''Twrinputs=TwrGeoInputs() Twrinputs.Twrmatins=Twrmatin #Twrinputs.Htwr=70. #Trumped by HH Twrinputs.Htwr2frac=0.2 #fraction of tower height with constant x-section Twrinputs.ndiv=np.array([6,6]) #ndiv for uniform and tapered section Twrinputs.Db=Db Twrinputs.DTRb=Db/tb #Twrinputs.Dt=Dt''' TwrRigidTop=True #False #False=Account for RNA via math rather than a physical rigidmember #RNA data '''RNAins=RNAprops() RNAins.mass=3*350.e3 RNAins.I[0]=86.579E+6 RNAins.I[1]=53.530E+6 RNAins.I[2]=58.112E+6 RNAins.CMoff[2]=2.34 RNAins.yawangle=45. #angle with respect to global X, CCW looking from above, wind from left RNAins.rna_weightM=True''' #Frame3DD parameters FrameAuxIns=Frame3DDaux() FrameAuxIns.sh_fg=1 #shear flag-->Timoshenko FrameAuxIns.deltaz=5. FrameAuxIns.geo_fg=0 FrameAuxIns.nModes = 6 # number of desired dynamic modes of vibration FrameAuxIns.Mmethod = 1 # 1: subspace Jacobi 2: Stodola FrameAuxIns.lump = 0 # 0: consistent mass ... 1: lumped mass matrix FrameAuxIns.tol = 1e-9 # mode shape tolerance FrameAuxIns.shift = 0.0 # shift value ... for unrestrained structures FrameAuxIns.gvector=np.array([0.,0.,-9.8065]) #GRAVITY #Pass all inputs to jacket assembly turbine.jacket.JcktGeoIn=Jcktins turbine.jacket.Soilinputs=Soilinputs turbine.jacket.Waterinputs=Waterinputs #turbine.jacket.Windinputs=Windinputs #turbine.jacket.RNA_F=RNA_F turbine.jacket.Pileinputs=Pileinputs turbine.jacket.leginputs=leginputs turbine.jacket.legbot_stmphin =legbot_stmphin turbine.jacket.Xbrcinputs=Xbrcinputs turbine.jacket.Mbrcinputs=Mbrcinputs turbine.jacket.Hbrcinputs=Hbrcinputs turbine.jacket.TPlumpinputs=TPlumpinputs turbine.jacket.TPinputs=TPinputs #turbine.jacket.RNAinputs=RNAins #turbine.jacket.Twrinputs=Twrinputs turbine.jacket.Twrinputs.Twrmatins=Twrmatin turbine.jacket.Twrinputs.Htwr2frac=0.2 #fraction of tower height with constant x-section turbine.jacket.Twrinputs.ndiv=np.array([6,6]) #ndiv for uniform and tapered section turbine.jacket.Twrinputs.Db=Db turbine.jacket.Twrinputs.Dt=Dt turbine.jacket.Twrinputs.DTRb=Db/tb turbine.jacket.Twrinputs.DTRt=Db/Dt # TODO double check turbine.jacket.TwrRigidTop=TwrRigidTop turbine.jacket.FrameAuxIns=FrameAuxIns
def setUp(self): # simple test of module Jcktins = JcktGeoInputs() Jcktins.nlegs = 4 Jcktins.nbays = 4 Jcktins.batter = 15. Jcktins.dck_botz = 16. Jcktins.VPFlag = True #vertical pile T/F; to enable piles in frame3DD set pileinputs.ndiv>0 Jcktins.clamped = False #whether or not the bottom of the structure is rigidly connected. Use False when equivalent spring constants are being used. self.jacket = set_as_top(JacketAsmly()) self.jacket.JcktGeoIn = Jcktins Soilinputs = SoilGeoInputs() Soilinputs.zbots = -np.array([3., 5., 7., 15., 30., 50.]) Soilinputs.gammas = np.array( [10000., 10000., 10000., 10000., 10000., 10000.]) Soilinputs.cus = np.array( [60000., 60000., 60000., 60000., 60000., 60000.]) Soilinputs.phis = np.array( [26., 26., 26., 26., 26., 26] ) #np.array([36.,33.,26.,37.,35.,37.5])#np.array([36.,33.,26.,37.,35.,37.5]) Soilinputs.delta = 25. Soilinputs.sndflg = True Soilinputs.PenderSwtch = False #True Soilinputs.SoilSF = 1. self.jacket.Soilinputs = Soilinputs #Water and wind inputs Waterinputs = WaterInputs() Waterinputs.wdepth = 30. Waterinputs.wlevel = 30. #Distance from bottom of structure to surface THIS, I believe is no longer needed as piles may be negative in z, to check and remove in case Waterinputs.T = 12. #Wave Period Waterinputs.HW = 10. #Wave Height Windinputs = WindInputs() Windinputs.HH = 100. #hub height set here self.jacket.Waterinputs = Waterinputs self.jacket.Windinputs = Windinputs #RNA loads Fx-z, Mxx-zz self.jacket.RNA_F = np.array([1000.e3, 0., 0., 0., 0., 0.]) #Legs Data legmatin = MatInputs() legmatin.matname = (['steel']) Dleg = np.array([2.0]).repeat(Jcktins.nbays + 1) tleg = np.array([0.0254]).repeat(Dleg.size) leginputs = LegGeoInputs() leginputs.legZbot = 1.0 leginputs.legmatins = legmatin leginputs.Dleg = Dleg leginputs.tleg = tleg self.jacket.leginputs = leginputs #The following is a passthrough variables self.jacket.legbot_stmphin = 1.5 #Distance from bottom of leg to second joint along z; must be>0 #Xbrc data Xbrcmatin = MatInputs() Xbrcmatin.matname = np.array(['steel']).repeat(Jcktins.nbays) Xbrcinputs = XBrcGeoInputs() Xbrcinputs.ndiv = 2 Xbrcinputs.Xbrcmatins = Xbrcmatin Xbrcinputs.precalc = True #This can be set to true if we want Xbraces to be precalculated in D and t, in which case the above set Dbrc and tbrc would be overwritten self.jacket.Xbrcinputs = Xbrcinputs #Mbrc data Mbrcmatin = MatInputs() Mbrcmatin.matname = np.array(['steel']) Mbrcinputs = MudBrcGeoInputs() Mbrcinputs.ndiv = 2 Mbrcinputs.Mbrcmatins = Mbrcmatin Mbrcinputs.precalc = True #This can be set to true if we want Mudbrace to be precalculated in D and t, in which case the above set Dbrc_mud and tbrc_mud would be overwritten self.jacket.Mbrcinputs = Mbrcinputs #Hbrc data Hbrcmatin = MatInputs() Hbrcmatin.matname = np.array(['steel']) Hbrcinputs = HBrcGeoInputs() Hbrcinputs.ndiv = 0 #2 Hbrcinputs.Hbrcmatins = Hbrcmatin Hbrcinputs.precalc = True #This can be set to true if we want Hbrace to be set=Xbrace top D and t, in which case the above set Dbrch and tbrch would be overwritten self.jacket.Hbrcinputs = Hbrcinputs #TP data TPlumpinputs = TPlumpMass() TPlumpinputs.mass = 300.e3 #[kg] self.jacket.TPlumpinputs = TPlumpinputs TPstmpsmatin = MatInputs() TPbrcmatin = MatInputs() TPstemmatin = MatInputs() TPbrcmatin.matname = np.array(['steel']) TPstemmatin.matname = np.array(['steel']).repeat(2) TPinputs = TPGeoInputs() TPinputs.TPbrcmatins = TPbrcmatin TPinputs.TPstemmatins = TPstemmatin TPinputs.TPstmpmatins = TPstmpsmatin TPinputs.Dstrut = 1.6 TPinputs.hstump = 0.0 #1.0 TPinputs.nstems = 3 TPinputs.Dstem = np.array([6.]).repeat(TPinputs.nstems) TPinputs.tstem = np.array([0.1, 0.11, 0.11]) TPinputs.hstem = np.array([4., 3., 1.]) self.jacket.TPinputs = TPinputs #Pile data Pilematin = MatInputs() Pilematin.matname = np.array(['steel']) Dpile = 2.5 #0.75 # 2.0 tpile = 0.01 Lp = 30. #45 Pileinputs = PileGeoInputs() Pileinputs.Pilematins = Pilematin Pileinputs.ndiv = 0 #3 Pileinputs.Dpile = Dpile Pileinputs.tpile = tpile Pileinputs.AFflag = False Pileinputs.Lp = Lp #[m] Embedment length self.jacket.Pileinputs = Pileinputs #RNA and Tower data RNAins = RNAprops() RNAins.mass = 3. * 350e3 RNAins.Ixx = 86.579E+6 RNAins.Iyy = 53.530E+6 RNAins.Izz = 58.112E+6 RNAins.CMzoff = 2.34 RNAins.yawangle = 45. #angle with respect to global X, CCW looking from above, wind from left self.jacket.TwrRigidTop = False #False=Account for RNA via math rather than a physical rigidmember self.jacket.RNAinputs = RNAins # Tower data Twrmatin = MatInputs() Twrmatin.matname = np.array(['steel']) Db = 5.9 tb = 0.05 Dt = Db * 0.55 Twrinputs = TwrGeoInputs() Twrinputs.Twrmatins = Twrmatin #Twrinputs.Htwr=70. #Trumped by HH Twrinputs.Htwr2frac = 0.2 #fraction of tower height with constant x-section Twrinputs.ndiv = np.array([6, 6]) #ndiv for uniform and tapered section Twrinputs.Db = Db Twrinputs.DTRb = Db / tb Twrinputs.Dt = Dt self.jacket.Twrinputs = Twrinputs # Frame3DD parameters FrameAuxIns = Frame3DDaux() FrameAuxIns.deltaz = 5. FrameAuxIns.nModes = 6 # number of desired dynamic modes of vibration FrameAuxIns.tol = 1e-9 # mode shape tolerance self.jacket.FrameAuxIns = FrameAuxIns
def setUp(self): # simple test of module Jcktins=JcktGeoInputs() Jcktins.nlegs =4 Jcktins.nbays =4 Jcktins.batter=15. Jcktins.dck_botz =16. Jcktins.VPFlag= True #vertical pile T/F; to enable piles in frame3DD set pileinputs.ndiv>0 Jcktins.clamped= False #whether or not the bottom of the structure is rigidly connected. Use False when equivalent spring constants are being used. self.jacket=set_as_top(JacketAsmly()) self.jacket.JcktGeoIn=Jcktins Soilinputs=SoilGeoInputs() Soilinputs.zbots =-np.array([3.,5.,7.,15.,30.,50.]) Soilinputs.gammas =np.array([10000.,10000.,10000.,10000.,10000.,10000.]) Soilinputs.cus =np.array([60000.,60000.,60000.,60000.,60000.,60000.]) Soilinputs.phis =np.array([26.,26.,26.,26.,26.,26])#np.array([36.,33.,26.,37.,35.,37.5])#np.array([36.,33.,26.,37.,35.,37.5]) Soilinputs.delta =25. Soilinputs.sndflg =True Soilinputs.PenderSwtch =False #True Soilinputs.SoilSF =1. self.jacket.Soilinputs=Soilinputs #Water and wind inputs Waterinputs=WaterInputs() Waterinputs.wdepth =30. Waterinputs.wlevel =30. #Distance from bottom of structure to surface THIS, I believe is no longer needed as piles may be negative in z, to check and remove in case Waterinputs.T=12. #Wave Period Waterinputs.HW=10. #Wave Height Windinputs=WindInputs() Windinputs.HH=100. #hub height set here self.jacket.Waterinputs=Waterinputs self.jacket.Windinputs=Windinputs #RNA loads Fx-z, Mxx-zz self.jacket.RNA_F=np.array([1000.e3,0.,0.,0.,0.,0.]) #Legs Data legmatin=MatInputs() legmatin.matname=(['steel']) Dleg=np.array([2.0]).repeat(Jcktins.nbays+1) tleg=np.array([0.0254]).repeat(Dleg.size) leginputs=LegGeoInputs() leginputs.legZbot = 1.0 leginputs.legmatins=legmatin leginputs.Dleg=Dleg leginputs.tleg=tleg self.jacket.leginputs=leginputs #The following is a passthrough variables self.jacket.legbot_stmphin =1.5 #Distance from bottom of leg to second joint along z; must be>0 #Xbrc data Xbrcmatin=MatInputs() Xbrcmatin.matname=np.array(['steel']).repeat(Jcktins.nbays) Xbrcinputs=XBrcGeoInputs() Xbrcinputs.ndiv=2 Xbrcinputs.Xbrcmatins=Xbrcmatin Xbrcinputs.precalc=True #This can be set to true if we want Xbraces to be precalculated in D and t, in which case the above set Dbrc and tbrc would be overwritten self.jacket.Xbrcinputs=Xbrcinputs #Mbrc data Mbrcmatin=MatInputs() Mbrcmatin.matname=np.array(['steel']) Mbrcinputs=MudBrcGeoInputs() Mbrcinputs.ndiv=2 Mbrcinputs.Mbrcmatins=Mbrcmatin Mbrcinputs.precalc=True #This can be set to true if we want Mudbrace to be precalculated in D and t, in which case the above set Dbrc_mud and tbrc_mud would be overwritten self.jacket.Mbrcinputs=Mbrcinputs #Hbrc data Hbrcmatin=MatInputs() Hbrcmatin.matname=np.array(['steel']) Hbrcinputs=HBrcGeoInputs() Hbrcinputs.ndiv=0#2 Hbrcinputs.Hbrcmatins=Hbrcmatin Hbrcinputs.precalc=True #This can be set to true if we want Hbrace to be set=Xbrace top D and t, in which case the above set Dbrch and tbrch would be overwritten self.jacket.Hbrcinputs=Hbrcinputs #TP data TPlumpinputs=TPlumpMass() TPlumpinputs.mass=300.e3 #[kg] self.jacket.TPlumpinputs=TPlumpinputs TPstmpsmatin=MatInputs() TPbrcmatin=MatInputs() TPstemmatin=MatInputs() TPbrcmatin.matname=np.array(['steel']) TPstemmatin.matname=np.array(['steel']).repeat(2) TPinputs=TPGeoInputs() TPinputs.TPbrcmatins=TPbrcmatin TPinputs.TPstemmatins=TPstemmatin TPinputs.TPstmpmatins=TPstmpsmatin TPinputs.Dstrut=1.6 TPinputs.hstump=0.0#1.0 TPinputs.nstems=3 TPinputs.Dstem=np.array([6.]).repeat(TPinputs.nstems) TPinputs.tstem=np.array([0.1,0.11,0.11]) TPinputs.hstem=np.array([4.,3.,1.]) self.jacket.TPinputs=TPinputs #Pile data Pilematin=MatInputs() Pilematin.matname=np.array(['steel']) Dpile=2.5#0.75 # 2.0 tpile=0.01 Lp=30. #45 Pileinputs=PileGeoInputs() Pileinputs.Pilematins=Pilematin Pileinputs.ndiv=0 #3 Pileinputs.Dpile=Dpile Pileinputs.tpile=tpile Pileinputs.AFflag=False Pileinputs.Lp=Lp #[m] Embedment length self.jacket.Pileinputs=Pileinputs #RNA and Tower data RNAins=RNAprops() RNAins.mass=3.*350e3 RNAins.Ixx=86.579E+6 RNAins.Iyy=53.530E+6 RNAins.Izz=58.112E+6 RNAins.CMzoff=2.34 RNAins.yawangle=45. #angle with respect to global X, CCW looking from above, wind from left self.jacket.TwrRigidTop=False #False=Account for RNA via math rather than a physical rigidmember self.jacket.RNAinputs=RNAins # Tower data Twrmatin=MatInputs() Twrmatin.matname=np.array(['steel']) Db=5.9 tb=0.05 Dt=Db*0.55 Twrinputs=TwrGeoInputs() Twrinputs.Twrmatins=Twrmatin #Twrinputs.Htwr=70. #Trumped by HH Twrinputs.Htwr2frac=0.2 #fraction of tower height with constant x-section Twrinputs.ndiv=np.array([6,6]) #ndiv for uniform and tapered section Twrinputs.Db=Db Twrinputs.DTRb=Db/tb Twrinputs.Dt=Dt self.jacket.Twrinputs=Twrinputs # Frame3DD parameters FrameAuxIns=Frame3DDaux() FrameAuxIns.deltaz=5. FrameAuxIns.nModes = 6 # number of desired dynamic modes of vibration FrameAuxIns.tol = 1e-9 # mode shape tolerance self.jacket.FrameAuxIns=FrameAuxIns