예제 #1
0
def laser_response(spikeTimeStamps, eventOnsetTimes, timeRange=[0.0, 0.1], baseRange=[0.5, 0.6]):
    spikeTimesFromEventOnset, trialIndexForEachSpike, indexLimitsEachTrial = spikesanalysis.eventlocked_spiketimes(
        spikeTimeStamps, eventOnsetTimes, [min(timeRange),max(baseRange)])
    zStatsEachRange,pValueEachRange,maxZvalue = spikesanalysis.response_score(spikeTimesFromEventOnset, indexLimitsEachTrial, baseRange, timeRange)
    baseSpikeCountMat = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnset, indexLimitsEachTrial, baseRange)
    baselineSpikeRate = np.mean(baseSpikeCountMat)/(baseRange[1]-baseRange[0])
    laserSpikeCountMat = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnset, indexLimitsEachTrial, timeRange)
    laserSpikeRate = np.mean(laserSpikeCountMat)/(timeRange[1]-timeRange[0])
    return (laserSpikeRate > baselineSpikeRate and pValueEachRange[0] < 0.00001)
예제 #2
0
def laser_response(cell, timeRange=[0.0, 0.1], baseRange=[0.5, 0.6]):
    cellInfo = get_cell_info(cell)
    loader = dataloader.DataLoader(cell['subject'])
    if len(cellInfo['laserIndex'])>0:
        eventData = loader.get_session_events(cellInfo['ephysDirs'][cellInfo['laserIndex'][-1]])
        spikeData = loader.get_session_spikes(cellInfo['ephysDirs'][cellInfo['laserIndex'][-1]], cellInfo['tetrode'], cluster=cellInfo['cluster'])
        eventOnsetTimes = loader.get_event_onset_times(eventData)
        spikeTimestamps = spikeData.timestamps
        spikeTimesFromEventOnset, trialIndexForEachSpike, indexLimitsEachTrial = spikesanalysis.eventlocked_spiketimes(
        spikeTimestamps, eventOnsetTimes, [min(timeRange),max(baseRange)])
        zStatsEachRange,pValueEachRange,maxZvalue = spikesanalysis.response_score(spikeTimesFromEventOnset, indexLimitsEachTrial, baseRange, timeRange)
        baseSpikeCountMat = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnset, indexLimitsEachTrial, baseRange)
        baselineSpikeRate = np.mean(baseSpikeCountMat)/(baseRange[1]-baseRange[0])
        laserSpikeCountMat = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnset, indexLimitsEachTrial, timeRange)
        laserSpikeRate = np.mean(laserSpikeCountMat)/(timeRange[1]-timeRange[0])
        laserResponse = (laserSpikeRate > baselineSpikeRate and pValueEachRange[0] < 0.00001)
    else:
        laserResponse = False

    return laserResponse
예제 #3
0
(spikeTimesFromEventOnset,trialIndexForEachSpike,indexLimitsEachTrial) = \
    spikesanalysis.eventlocked_spiketimes(spkTimeStamps,eventOnsetTimes,timeRange)

plt.clf()
ax1=plt.subplot(2,1,1)
plt.plot(spikeTimesFromEventOnset,trialIndexForEachSpike,'.')
plt.show()

# -- Calculate sound responsiveness --

baseRange = [-0.050,-0.025]              # Baseline range (in seconds)
rangeLength = np.diff(baseRange)         # Time-bin size
binEdges = np.arange(-8,24)*rangeLength  # Edges of bins to calculate response (in seconds)

#baseRange = [-0.1, 0]              # Baseline range (in seconds)
#binEdges = [-0.1,0, 0.1, 0.2]
[zStat,pValue,maxZ] = spikesanalysis.response_score(spikeTimesFromEventOnset,indexLimitsEachTrial,baseRange,binEdges)

print 'Max absolute z-score: {0}'.format(maxZ)

ax2=plt.subplot(2,1,2,sharex=ax1)
plt.axhline(0,ls='-',color='0.5')
plt.axhline(+3,ls='--',color='0.5')
plt.axhline(-3,ls='--',color='0.5')
plt.step(binEdges[:-1],zStat,where='post',lw=2)
plt.ylabel('z-score')
plt.xlabel('time (sec)')
plt.show()

예제 #4
0
    # -- Load Spike Data From Certain Cluster --
    for Frequency in range(numberOfFrequencies):
        Freq = possibleFreq[Frequency]
        oneFreqTrials = bdata['targetFrequency'] == Freq    

        oneFreqEventOnsetTimes = eventOnsetTimes[oneFreqTrials] #Choose only the trials with this frequency


        spkData = ephyscore.CellData(oneCell)
        spkTimeStamps = spkData.spikes.timestamps

        (spikeTimesFromEventOnset,trialIndexForEachSpike,indexLimitsEachTrial) = \
            spikesanalysis.eventlocked_spiketimes(spkTimeStamps,oneFreqEventOnsetTimes,timeRange)


        [zStat,pValue,maxZ] = spikesanalysis.response_score(spikeTimesFromEventOnset,indexLimitsEachTrial,baseRange,binEdges) #computes z score for each bin. zStat is array of z scores. maxZ is maximum value of z in timeRange
        clusterNumber = (tetrode-1)*clusNum+(cluster-1)
        maxZDict[behavSession][Freq][clusterNumber] = maxZ
 

bSessionList = []
for bSession in maxZDict:
    bSessionList.append(bSession)

bSessionList.sort()
for bSession in bSessionList:
    text_file.write("\nBehavior Session:%s" % bSession)
    for freq in maxZDict[bSession]:
        text_file.write("\n%s " % freq)
        for ZVal in maxZDict[bSession][freq]:
            text_file.write("%s," % ZVal)
예제 #5
0

#Use a longer base timerange so that we can determine baseline firing rate
timeRange = [-0.5, 1]
spikeTimesFromEventOnset, trialIndexForEachSpike, indexLimitsEachTrial = spikesanalysis.eventlocked_spiketimes(
    spikeTimestamps, eventOnsetTimes, timeRange)


maxZarray = np.zeros([len(possibleIntensity), len(possibleFreq)])
for indInt, intensity in enumerate(possibleIntensity):
    for indFreq, freq in enumerate(possibleFreq):
        trialsThisCombo = np.flatnonzero((currentIntensity==inten) & (currentFreq==freq))
        indexLimitsThisCombo = indexLimitsEachTrial[:, trialsThisCombo]
        spikeTimesThisCombo= spikeTimesFromEventOnset[np.in1d(trialIndexForEachSpike, trialsThisCombo)]

        [zStat,pValue,maxZ] = spikesanalysis.response_score(spikeTimesThisCombo,indexLimitsThisCombo,baseRange,binEdges) #computes z score for each bin. zStat is array of z scores. maxZ is maximum value of z in timeRange

        maxZarray[indInt, indFreq] = maxZ




#Testing the above method
testfreq = possibleFreq[6]
testinten = 60

trialsThisCombo = np.flatnonzero((currentFreq==testfreq)&(currentIntensity==testinten))

timeRange = [-0.5, 1]
spikeTimesFromEventOnset, trialIndexForEachSpike, indexLimitsEachTrial = spikesanalysis.eventlocked_spiketimes(
    spikeTimestamps, eventOnsetTimes, timeRange)
            for Frequency in range(numberOfFrequencies):
                Freq = possibleFreq[Frequency]
                oneFreqTrials = bdata['targetFrequency'] == Freq  #only use a certain frequency
                trialsToUse = (oneFreqTrials & validTrials)

                oneFreqEventOnsetTimes = eventOnsetTimes[trialsToUse] #Choose only the trials with this frequency


                spkData = ephyscore.CellData(oneCell)
                spkTimeStamps = spkData.spikes.timestamps

                (spikeTimesFromEventOnset,trialIndexForEachSpike,indexLimitsEachTrial) = \
                    spikesanalysis.eventlocked_spiketimes(spkTimeStamps,oneFreqEventOnsetTimes,timeRange)


                [zStat,pValue,maxZ] = spikesanalysis.response_score(spikeTimesFromEventOnset,indexLimitsEachTrial,baseRange,binEdges) #computes z score for each bin. zStat is array of z scores. maxZ is maximum value of z in timeRange

                clusterNumber = (tetrode-1)*clusNum+(cluster-1)
                #maxZArray[clusterNumber].append(maxZ)
                maxZDict[behavSession][Freq][clusterNumber] = maxZ
                #if abs(maxZ)=<Zthreshold & onecell.soundResponsive!=True:
                    #oneCell.soundResponsive=False
                #elif abs(maxZ)>Zthreshold:
                    #oneCell.soundResponsive=True

                #ZscoreArray[:,Frequency,cellID] = zStat
                
        except:
            #print "error with session "+oneCell.behavSession
            if (oneCell.behavSession not in badSessionList):
                badSessionList.append(oneCell.behavSession)
    spikesanalysis.eventlocked_spiketimes(spkTimeStamps,eventOnsetTimes,timeRange)

plt.clf()
ax1 = plt.subplot(2, 1, 1)
plt.plot(spikeTimesFromEventOnset, trialIndexForEachSpike, '.')
plt.show()

# -- Calculate sound responsiveness --

baseRange = [-0.050, -0.025]  # Baseline range (in seconds)
rangeLength = np.diff(baseRange)  # Time-bin size
binEdges = np.arange(
    -8, 24) * rangeLength  # Edges of bins to calculate response (in seconds)

#baseRange = [-0.1, 0]              # Baseline range (in seconds)
#binEdges = [-0.1,0, 0.1, 0.2]
[zStat, pValue, maxZ] = spikesanalysis.response_score(spikeTimesFromEventOnset,
                                                      indexLimitsEachTrial,
                                                      baseRange, binEdges)

print 'Max absolute z-score: {0}'.format(maxZ)

ax2 = plt.subplot(2, 1, 2, sharex=ax1)
plt.axhline(0, ls='-', color='0.5')
plt.axhline(+3, ls='--', color='0.5')
plt.axhline(-3, ls='--', color='0.5')
plt.step(binEdges[:-1], zStat, where='post', lw=2)
plt.ylabel('z-score')
plt.xlabel('time (sec)')
plt.show()
def tuning_curve_response(cell):
    '''
    Calculate max Z-score during the response period for each freq-inten combo in a TC
    '''

    try:
        sessiontypeIndex = cell['sessiontype'].index('TuningCurve')
    except ValueError:  #The cell does not have this session type
        return None

    #Initialize a data loader for this animal
    loader = dataloader.DataLoader(cell['subject'])

    #Get the behavior data
    behavData = loader.get_session_behavior(cell['behavior'][sessiontypeIndex])
    intensityEachTrial = behavData['currentIntensity']
    freqEachTrial = behavData['currentFreq']

    possibleFreq = np.unique(freqEachTrial)
    possibleIntensity = np.unique(intensityEachTrial)

    #Return the cluster spike data for this ephys session
    ephysDir = cell['ephys'][sessiontypeIndex]
    clusterSpikeData = loader.get_session_spikes(ephysDir,
                                                 int(cell['tetrode']),
                                                 cluster=int(cell['cluster']))
    clusterSpikeTimes = clusterSpikeData.timestamps

    #Get the events for this session and calculate onset times
    eventData = loader.get_session_events(ephysDir)
    eventOnsetTimes = loader.get_event_onset_times(eventData,
                                                   minEventOnsetDiff=None)

    timeRange = [0, 0.1]

    baseRange = [-0.050, -0.025]  # Baseline range (in seconds)
    binTime = baseRange[1] - baseRange[0]  # Time-bin size
    responseTimeRange = timeRange  #Time range to calculate z value for (should be divisible by binTime
    responseTime = responseTimeRange[1] - responseTimeRange[0]
    numBins = responseTime / binTime
    binEdges = np.arange(responseTimeRange[0], responseTimeRange[1], binTime)

    zvalArray = np.zeros((len(possibleIntensity), len(possibleFreq)))

    for indfreq, freq in enumerate(possibleFreq):
        for indinten, inten in enumerate(possibleIntensity):
            selectinds = np.flatnonzero((freqEachTrial == freq)
                                        & (intensityEachTrial == inten))
            selectedOnsetTimes = eventOnsetTimes[selectinds]


            (spikeTimesFromEventOnset,trialIndexForEachSpike,indexLimitsEachTrial) = \
            spikesanalysis.eventlocked_spiketimes(clusterSpikeTimes,selectedOnsetTimes,timeRange)

            [zStat, pValue, maxZ] = spikesanalysis.response_score(
                spikeTimesFromEventOnset, indexLimitsEachTrial, baseRange,
                binEdges
            )  #computes z score for each bin. zStat is array of z scores. maxZ is maximum value of z in timeRange

            zvalArray[indinten, indfreq] = maxZ
            # zvalArray = np.flipud(zvalArray)

    return zvalArray